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Resumo

Durante um estudo da função zeta de Riemann, analizando alguns gráficos com

ela relaçionadis e procurando relações entre a hipótese de Riemann e o tamanho

(valor absoluto) da função-zeta, observamos uma relação interessante entre esses

valores, nomeadamente, que na faixa 0 < σ < 1/2 com |t| ≥ 6.5, se tem (onde,

como é usual, s = σ + it):

|ζ(1− s)| ≤ |ζ(s)|

Mais tarde, apercebemo-nos que este resultado tinha já sido demonstrado por

Dixon-Schoenfeld e Spira na década de 1960. No entanto, a nossa demonstração é

diferente e tem a vantagem de envolver, em vez da fórmula assimptótica de Stirling,

algumas desigualdades relacionadas com um produto infinito de π e a função Γ de

Euler. O resultado principal do primeiro caṕıtulo é, pois, que

|ζ(1− s)| ≤ |ζ(s)|, for 0 < σ <
1

2
,

onde a igualdade ocorre só se ζ(s) = 0.

No segundo caṕıtulo dá-se um refinamento de estimativas de algumas funções

relacionadas com a distribuição dos números primos, tais como as funções ψ e ϑ

de Chebyshev, usando uma nova região livre de zeros e o cálculo de novos zeros

da função zeta, obtidas por Kadiri e Gourdon, respectivamente.

No terceiro caṕıtulo introduzimos e investigamos algumas sequências relacionadas

com um teorema de Robin, que afirma que, a hipótese de Riemann é equivalente

à desigualdade σ(n) < eγn log log n para todos n > 5040, onde σ(n) é a soma dos

divisores de n e γ é a constante de Euler. Com base nesta desigualdade, introduz-

imos uma sequência de números, que apelidamos de extremamente abundantes, e

mostramos que a hipótese de Riemann é verdadeira se e só se existe uma infinidade

destes números. Investigamos ainda algumas das suas propriedades e a estrutura

dos números extremamente abundantes, assim como algumas propriedades dos os

números superabundantes e colossalmente abundantes. Finalmente apresentamos

dois outros conjuntos de números, relacionados com os números extremamente

abundantes, que mostram o quanto subtil é a hipótese de Riemann.
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Abstract

While studying the Riemann zeta-function, observing some graphs related to it

and looking for some relation between the Riemann hypothesis and the absolute

value of the Riemann zeta function, we noted an interesting relationship between

those values, namely, that in the strip 0 < σ < 1/2 with |t| ≥ 6.5, one has (as

usual s = σ + it):

|ζ(1− s)| ≤ |ζ(s)|

Later we found that this result had been proved by Dixon-Schoenfeld and Spira in

1960’s. Nevertheless, our proof was different and has the advantages of involving,

instead of Stirling’s asymptotic formula, some inequalities related to an infinite

product for π and Euler’s Γ-function. The main result of the first chapter is, thus,

that

|ζ(1− s)| ≤ |ζ(s)|, for 0 < σ <
1

2
, (0.1)

where the equality takes place only if ζ(s) = 0.

In the second chapter, we give an improvement for estimates of some functions

related to the distribution of primes, such as Chebyshev’s ψ and ϑ functions, using

some new zero-free region and computations of new zeros of the zeta-function,

obtained by Kadiri and Gourdon respectively.

In the third chapter, we introduce and investigate some sequences related to

Robin’s theorem, which states that, the Riemann hypothesis is equivalent to the

inequality σ(n) < eγn log log n for all n > 5040, where γ is Euler’s constant.

Inspired by this inequality, we introduce a sequence of numbers, that we call ex-

tremely abundant, and show that the Riemann hypothesis is true if and only if

there are infinitely many of these numbers. Moreover, we investigate some of their

properties and structure, as well as some properties of superabundant and colos-

sally abundant numbers. Finally we introduce two other sets of numbers, related

to extremely abundant numbers, that show how subtle the Riemann hypothesis is.
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Notations

f(x) = Ω+(g(x)) f(x) > Cg(x) for a suitable constant C > 0 and a sequence

x = xn s.t. xn →∞

f(x) = Ω−(g(x)) f(x) < −Cg(x) for a suitable constant C > 0 and a sequence

x = xn s.t. xn →∞

f(x) = Ω±(g(x)) Both f(x) = Ω+(g(x)) and f(x) = Ω−(g(x)) hold

f(x) = Ω(g(x)) |f(x)| = Ω+(g(x))

f(x) = O(g(x)) |f(x)| ≤ A|g(x)| for some constant A and all values of x > x0

for some x0

f(x) = o(g(x)) limx→∞
f(x)
g(x)

= 0

f ∼ g limx→∞
f(x)
g(x)

= 1

π(x) the number of prime numbers p ≤ x

Π(x) Riemann prime counting function; i.e.∑
pm≤x

1
m

= π(x) + 1
2
π(x1/2) + 1

3
π(x1/3) + · · ·

li(x) lim
ε→0

(∫ 1−ε

0

dt

log t
+

∫ x

1+ε

dt

log t

)

Li(x)
∫ x

2
dt

log t
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bxc the integral part of x

σ(n) sum of divisors of a positive integer n

d(n) number of divisors of a positive integer n

φ(n) Euler’s totient function: the number of positive integers

not exceeding n which are relatively prime to n

ϑ(x) Chebyshev’s first function:
∑

p≤x log p

ψ(x) Chebyshev’s second function:
∑

pm≤x log p

Ψ(n) Dedekind’s arithmetical function: n
∏

p|n(1 + 1/p)

SA Set of superabundant numbers, also abbreviation for superabundant

CA Set of colossally abundant numbers, also abbreviation for colossally abundant

XA Set of extremely abundant numbers, also abbreviation for extremely abundant
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Chapter 0

Introduction

Contents

0.1 A Note About the Riemann Hypothesis . . . . . . . . . 1

0.2 Equivalent Statements to RH . . . . . . . . . . . . . . . 4

0.3 Brief Description of the Chapters . . . . . . . . . . . . . 5

0.4 Own papers . . . . . . . . . . . . . . . . . . . . . . . . . . 7

0.1 A Note About the Riemann Hypothesis

If I were to awaken after having slept for a thousand years, my first

question would be: has the Riemann hypothesis been proven?

Attributed to David Hilbert ([6, p. 5])

As with any big problem, trying to solve such problems, even if one could not solve

them, they shed light on the other parts of the life. The main motivation of this

thesis, is to study a class of problems equivalent to the Riemann hypothesis (RH).

Among mathematicians many of them believe that the RH and its generaliza-

tion is probably the most important problem in mathematics. This problem was

the 8-th problem of Hilbert’s famous list of 23 problems for the century in 1900

Paris Conference of the International Congress of Mathematicians.

The RH is connected to many other branches of mathematics, for instance it

has a close relation to the prime numbers - building blocks of integers - and their

distribution. Riemann(1826-1866) in his 8-page paper - the only paper he wrote

in number theory - formulated the problem by saying:
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. . . One finds in fact about this many real roots (of zeta function) within

these bounds and it is very likely that all of the roots are real. One would

of course like to have a rigorous proof of this, but I have put aside the

search for such a proof after some fleeting vain attempts because it is not

necessary for the immediate objective of my investigation(B. Riemann:

[23], p. 301).

In other words, Riemann conjectured that the real part of all non-trivial zeros

of the zeta function is 1/2. The RH has been verified numerically up to 1013

zeros with no exception. The table below demonstrates the history of numerical

verification of the zeros:

Year Number of zeros Computed by

1859 (approx) 1 (or 3) B. Riemann

1903 15 J. P. Gram

1914 79 R. J. Backlund

1925 138 J. I. Hutchinson

1935 1041 E. C. Titchmarsh

1953 1104 A. M. Turing

1956 15,000 D. H. Lehmer

1956 25,000 D. H. Lehmer

1958 35,337 N. A. Meller

1966 250,000 R. S. Lehman

1968 3,500,000 J. B. Rosser, et al.

1977 40,000,000 R. P. Brent

1979 81,000,001 R. P. Brent

1982 200,000,001 R. P. Brent, et al.

1983 300,000,001 J. van de Lune, H. J. J. te Riele

1986 1,500,000,001 J. van de Lune, et al.

2001 10,000,000,000 J. van de Lune(unpublished)

2004 900,000,000,000 S. Wedeniwski

2004 10,000,000,000,000 X. Gourdon

Table 1: Numerical verification of zeros of the zeta function ([6], p. 39)

Let s = σ + it (σ, t ∈ R) be a complex number. Let

ζ(s) =
∞∑
n=1

1

ns
= 1 +

1

2s
+

1

3s
+ · · · . (0.1)
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If s = 1, then
∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+ · · · ,

is the harmonic series, which is divergent and so is when <(s) ≤ 1. It converges

whenever <(s) > 1, since∣∣∣∣∣
∞∑
n=1

1

ns

∣∣∣∣∣ ≤
∞∑
n=1

1

nσ
≤ 1 +

∫ ∞
1

dt

tσ
=

σ

σ − 1
. (0.2)

One of the most important relations which makes a connection between the prime

numbers and the zeta function is

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

(
1− 1

ps

)−1

, (σ > 1). (0.3)

This is called Euler’s identity (or Euler product formula), and it had been used

by Euler with positive integer values of s [27], and by Chebyshev with s as a real

variable. Riemann then introduced the idea of treating s as a complex variable

and studying the series on the left side by the methods of the theory of analytic

functions (cf. [23], p. 7).

In 1859, Riemann proved that ζ(s) can be continued analytically to an analytic

function over the whole complex plane, with the exception of s = 1.

One of the important relations in the theory of the zeta function ζ(s) is the

functional equation which states some symmetry of this function. From Euler’s

product formula, ζ(s) has no zeros for <(s) > 1. From the functional equation ζ(s)

has trivial zeros at s = −2,−4, . . ., and the nontrivial zeros lie inside the region

0 ≤ <(s) ≤ 1 (critical strip) and are symmetric about the vertical line <(s) = 1
2

(critical line) and the real axis =(s) = 0. Hardy in [34] proved that there are

infinitely many zeros of the zeta function on the critical line. More details about

the Riemann zeta function is discussed in the first chapter. We finish this section

by a quote from E. Bombieri:

Even a single exception to Riemann’s conjecture would have enormously

strange consequences for the distribution of prime numbers. . . . If the

RH turns out to be false, there will be huge oscillations in the distribu-

tion of primes. In an orchestra, that would be like one loud instrument

that drowns out the others an aesthetically distasteful situation [5].

3



0.2 Equivalent Statements to RH

As we indicated before, RH has a variety of equivalent statements in mathematics.

Here we list some of number-theoretic ones ([6, Ch. 5], see also [16]).

1. Let π(x) be the number of primes less than or equal to a real number x, and

Li(x) =

∫ x

2

dt

log t
.

The assertion that

π(x) = Li(x) +O(
√
x log x)

is equivalent to the RH.

2. The second Chebyshev function ψ(x) is the logarithm of the least common

multiple of the integers from 1 to x.

L. Schoenfeld [70] showed that if RH is true then

|ψ(x)− x| < 1

8π

√
x log2 x, (x > 73.2).

Von Koch [77] proved that the RH is equivalent to the “best possible”bound

for the error of the prime number theorem. Therefore that the RH is equiv-

alent to [16]

|ψ(x)− x| < 1

8π

√
x log2 x, (x > 73.2).

The following equivalence is due to Robin [64], which is the basis for the

chapter 3 of the thesis:

3. The RH is equivalent to inequality

σ(n) < eγn log log n, (n > 5040),

where γ is Euler’s constant

γ = lim
n→∞

(
n∑
k=1

1

k
− log n

)
≈ 0.577 215 664 (0.4)

and

σ(n) =
∑
d|n

d (0.5)

is the sum of divisors of n.

4



0.3 Brief Description of the Chapters

• The first chapter consists of two sections. In the first section, we give the

definition of the Riemann zeta function and list some of its known behaviors

such as its extension, functional equation, symmetric location of zeros, etc.

In the second section, over a curious studying of the Riemann zeta function

and looking for some problem related to the RH, we found an interesting

problem about the size of it. It is stated as a main theorem of this section.

The corresponding theorem below has been proved independently by Spira

([74]) and Dixon and Schoenfeld [19] in 1960’s. Our proof has an advan-

tage, because it involves elementary calculus, new elementary inequalities

and known formulas for some functions and constants. Moreover, we present

a relation between the size of the Riemann zeta function and the RH. More

precisely,

Theorem. Let s = σ + it, where |t| ≥ 12. Then

|ζ(1− s)| ≤ |ζ(s)|, for 0 < σ <
1

2
, (0.6)

where the equality takes place only if ζ(s) = 0.

As a corollary, one can prove that the strict inequality in (0.6) is equivalent to

the RH. Besides, we prove the following result related to the partial derivative

of |ζ(s)|2 with respect to the real part of s

Proposition. If

∂

∂σ
|ζ(s)|2 < 0, for (0 < σ <

1

2
, |t| > 6.5), (A)

then the RH is true.

We conclude the first chapter by the converse of the previous proposition as

Conjecture. The condition (A) is also necessary for the validity of the RH.

• The second chapter is devoted to an improvement of some results due to

Rosser and Schoenfeld (R-S) ([68], [70]) related to the distribution of prime

numbers in the sense of Chebyshev’s ψ function. To do this we use new

zero free region [48] and recently calculated zeros of ζ(s) function [31]. For

instance, we prove the following results.

5



(i) Let

ε0(x) =
√

8/πX1/2e−X .

Then

|ψ(x)− x| < xε0(x), (x ≥ 3)

and

|ϑ(x)− x| < xε0(x), (x ≥ 3).

(ii) Let T0 be defined as in (2.23) and satisfy T0 ≥ D, where 2 ≤ D ≤ A

and A is defined in 2.13. Let m be a positive integer and let δ > 0.

Then

|ψ(x)− x| < ε∗0x, (x ≥ eb),

where

ε∗0 = Ω∗1e
−b/2 + Ω∗3 +

m

2
δ + e−b log 2π,

where Ω∗1 and Ω∗3 are defined in 2.24 and 2.25.

For more details we refer to Theorem 2.20. We note that some of the results

were mentioned by Dusart [21, p. 5]. However, our computed values in

the tables at the end of the thesis are different from Dusart’s. our method is

similar to Rosser and Schoenfeld (see details in [68], [70]). Then we infer some

estimates for certain functions of distribution of primes. Also we establish

a sufficient condition for the RH. We conclude this chapter by giving the

estimates for the certain product over primes which is like a dual for Mertens’

third theorem.

• The third chapter is based on Robin’s inequality (3.2) and his equivalence to

the RH. Investigating the sum of divisors function and Robin’s inequality, we

noticed that the first integer n which violates this inequality, if exists, should

have the property that σ(n)/n > σ(m)/m for m < n. These numbers are

called superabundant numbers. Akbary and Friggstad [2] proved that this

is indeed the case. However, continuing to investigate Robin’s inequality

and modifying the Robin’s inequality, we extracted and introduced a new

subsequence of positive integers, which possibly can give a progress to the

truth of the RH. Namely, in some way, it is a translation of Robin’s criterion

to a different aspect using the Gronwall theorem. But in our opinion these

numbers have their own interest. We call this sequence “extremely abundant

numbers” (in short XA numbers) and present some of their properties. For

instance, we prove

6



(i) If there is any counterexample to Robin’s inequality (3.2), then the least

one is an XA number.

(ii) The RH is true if and only if #XA =∞.

(iii) If n ∈ XA, then p(n) < log n.

Besides, we present a list of properties for the well known sequences of su-

perabundant and colossally abundant and extremely abundant numbers. Fi-

nally, we state certain numerical results about superabundant and extremely

abundant numbers, worth to be mentioned as well. Finally we demonstrate

the delicacy of RH by defining a subset of superabundant which is is defined

in a particular way (that is also a superset of extremely abundant number)

and giving the proof for infinitude of the cardinality of this subset.

0.4 Own papers

– Nazardonyavi, Sadegh; Yakubovich, Semyon, Another proof of Spira’s

inequality and its application to the Riemann hypothesis, Journal of

Mathematical Inequalities (7) No. 2 (2013), 167-174.

– Nazardonyavi, Sadegh; Yakubovich, Semyon, Extremely abundant num-

bers and the Riemann hypothesis, (submitted)
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1.1 Preliminaries About the Riemann Zeta Func-

tion

1.1.1 Complex-Valued Functions

An entire function is a function which is analytic in the whole plane. For example

polynomials, ez, sin z, and cos z are entire. If z0 is an isolated singular point of f ,

then the Laurent series representation for f(z) in a punctured disk 0 < |z−z0| < R2

is:

f(z) =
∞∑
n=0

an(z − z0)n +
∞∑
n=1

bn
(z − z0)n

.

If in the principal part of f at z0 (i.e., the second series above) bm 6= 0 and

bm+1 = bm+2 = · · · = 0 (m ≥ 1), then the isolated singular point z0 is called a pole

of order m. If m = 1 then z0 is a simple pole and b1 as the residue of f at z0. A

meromorphic function is a function which is analytic except for poles(cf. [8, pp.

73, 231, 241, 291]). For example Riemann ζ function is a meromorphic in the hole

plane except at s = 1 with residue 1.

1.1.2 Representations of Entire Functions

Assume that f(z) is an entire function and hasm zeros at the origin, and a1, a2, . . . , aN

are non-zero zeros of f . We can write (see [1])

f(z) = zmeg(z)
N∏
n=1

(
1− z

an

)
.

If there are infinitely many zeros, then

f(z) = zmeg(z)
∞∏
n=1

(
1− z

an

)
.

This representation is valid if the infinite product converges uniformly on every

compact set. We formulate here the famous Weierstrass theorem ([1, p. 194]).

Theorem 1.1 ([1], p. 195). There exists an entire function with arbitrarily pre-

scribed zeros an provided that, in the case of infinitely many zeros, an →∞. Every

entire function with these and no other zeros can be written in the form

f(z) = zmeg(z)
∞∏
n=1

(
1− z

an

)
e

z
an

+ 1
2( z

an
)
2
+···+ 1

mn
( z
an

)
mn

,

10



where the product is taken over all an 6= 0, the mn are certain integers, and g(z)

is an entire function.

The product
∞∏
n=1

(
1− z

an

)
e

z
an

+ 1
2( z

an
)
2
+···+ 1

h( z
an

)
h

converges and represent an entire function provided that the series
∑

1/|an|h+1

converges. Assume that h is the smallest integer for which this series converges

(see [1, p. 196]).

1.1.3 Gamma Function

The zeros of sinπz are the integers z = ±n. Since
∑

1/n diverges and
∑

1/n2

converges, we must take h = 1. Then

sin πz = πz
∞∏
n=1

(
1− z2

n2

)
. (1.1)

The function Γ(z) is called Euler’s gamma function ([1, p. 199]). It has the

representation

Γ(z) =
e−γz

z

∞∏
n=1

(
1 +

z

n

)−1

ez/n,

or equivalently

Γ(z) =
1

z

∞∏
n=1

(1 + 1/n)z

1 + z/n
. (1.2)

It satisfies the following equations

Γ(z + 1) = zΓ(z),

Γ(z)Γ(1− z) =
π

sin πz
(1.3)

and

√
πΓ(2z) = 22z−1Γ(z)Γ(z +

1

2
), (Legendre’s duplication formula). (1.4)

The function Γ(z) is a meromorphic function with poles at z = 0,−1,−2, . . . and

has no zeros (cf. [1, pp. 197-200]).
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1.1.4 The Riemann Zeta Function

The Riemann zeta function ζ(s) is defined as

ζ(s) =
∞∑
n=1

1

ns
, (<(s) > 1).

Riemann introduced the notation s = σ + it in his paper to denote a complex

number.

The following theorem is a useful tool in number theory to compute series and

it is called Abel’s identity.

Theorem 1.2 ([44], p. 18). Let λ1, λ2, . . . be a real sequence which increases (in

the wide sense) and has the limit infinity, and let

C(x) =
∑
λn≤x

cn,

where the cn may be real or complex, and the notation indicates a summation over

the (finite) set of positive integers n for which λn ≤ x. Then, if X ≥ λ1 and φ(x)

has a continuous derivative, we have

∑
λn≤X

cnφ(λn) = C(X)φ(X)−
∫ X

λ1

C(x)φ′(x)dx. (1.5)

If, further, C(X)φ(X)→ 0 as X →∞, then

∞∑
1

cnφ(λn) = −
∫ ∞
λ1

C(x)φ′(x)dx,

provided that either side is convergent.

Using this theorem, we can extend the domain of definition of the ζ function

to the left side of σ = 1. By Theorem 1.2, with λn = n, cn = 1, φ(x) = x−s,∑
n≤X

1

ns
= s

∫ X

1

bxc
xs+1

dx+
bXc
Xs

, (X ≥ 1).

where bxc is the largest integer not greater than x. Writing bxc = x−{x}, so that

0 ≤ {x} < 1, we obtain∑
n≤X

1

ns
=

s

s− 1
− s

(s− 1)Xs−1
− s

∫ X

1

{x}
xs+1

dx+
1

Xs−1
− {X}

Xs
.

Since|1/Xs−1| = 1/Xσ−1 and |{X}/Xs| < 1/Xσ, we deduce, making X →∞

ζ(s) =
s

s− 1
− s

∫ ∞
1

{x}
xs+1

dx, (σ > 1).

12



The integral in the right-hand side of the latter equation is convergent for σ > 0.

So that this equation gives an analytic continuation of ζ(s) over the half-plane

σ > 0 (cf. [44, p. 26]).

1.1.5 The Functional Equation

Riemann in his 1859 paper established the functional equation and used it to

construct the analytic continuation of ζ(s) beyond the region σ > 1.

Theorem 1.3 ([76], Th. 2.1). The function ζ(s) is regular (i.e., analytic) for all

values of s except s = 1, where there is a simple pole with residue 1. It satisfies

the functional equation

ζ(s) = 2sπs−1 sin

(
1

2
πs

)
Γ(1− s)ζ(1− s). (1.6)

Functional equation (1.6) may be written in the form

ζ(s) = χ(s)ζ(1− s), (1.7)

with

χ(s) = 2sπs−1 sin

(
1

2
πs

)
Γ(1− s).

By (1.3) and (1.4) we get

χ(s) =2sπs−1 sin

(
1

2
πs

)
Γ(1− s)

=2sπs−1 π

Γ(s/2)Γ(1− s/2)
Γ(1− s)

=2sπs−1 π

Γ(s/2)Γ(1− s/2)
π−1/22−sΓ

(
1

2
− s

2

)
Γ
(

1− s

2

)
=πs−1/2 Γ(1/2− s/2)

Γ(s/2)
, (1.8)

and by substitution

χ(s)χ(1− s) = 1.

1.1.6 Values of ζ(s) in the Integers

The Bernoulli numbers Bn can be defined by the generating function (cf. [28, p.

41])

x

ex − 1
=
∞∑
n=0

Bn

n!
xn.

13



From this one gets

B0 = 1, B1 = −1

2
, B2 =

1

6
, B4 = − 1

30
, B6 =

1

42
, B2n+1 = 0, (n ∈ Z+),

and in general are given by the double sum (see [40], [30], [78])

Bn =
n∑
k=0

1

k + 1

k∑
r=0

(−1)r
(
k

r

)
rn, (n = 0, 1, 2, . . .).

It is known that

ζ(−n) =
(−1)n

n+ 1
Bn+1, n = 0, 1, 2, . . . .

Since B2n+1 = 0 for n ∈ Z+, then ζ(−2n) = 0 for n ∈ Z+.

ζ(0) = −1

2
, ζ(−2n) = 0, ζ(1− 2n) = − 1

2n
B2n, n = 1, 2, . . . .

Using functional equation (1.6) for zeta and the values of Gamma function in

integers, one deduces the formula

ζ(2n) =
(−1)n−1(2π)2n

2(2n)!
B2n, n ∈ Z+.

1.1.7 Zeros of the Riemann Zeta Function

From Euler’s identity (0.3) we deduce that ζ(s) has no zeros for σ > 1. From the

functional equation (1.6) we observe that ζ(s) has no zeros for σ < 0 except trivial

zeros at s = −2n, (n ∈ Z+). Zeros, which lie inside the region 0 ≤ <(s) ≤ 1

are called non-trivial. By the functional equation and the relation ζ(s) = ζ(s)

(reflection principle) one sees that non-trivial zeros are symmetric with respect to

the vertical line <(s) = 1
2

and the real axis =(s) = 0. Hence, if ρ is a zero of ζ,

then ρ, 1−ρ and 1−ρ are. Also we mentioned in the Introduction, Riemann made

a conjecture that <(ρ) = 1/2 for all non-trivial zeros ρ. In 1896 Hadamard and

de la Vallée Poussin proved independently that ζ(s) 6= 0 on the line σ = 1 ([6, p.

16]).

Number of Zeros of ζ(s): Riemann-von Mangoldt Formula

Let N(T ), where T > 0, denote the number of zeros ρ = β + iγ of ζ(s), for which

0 < β < 1 and 0 < γ ≤ T . Let

F (T ) =
T

2π
log

T

2π
− T

2π
+

7

8
(1.9)
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and

R(T ) = 0.137 log T + 0.443 log log T + 1.588. (1.10)

Then the following theorem holds:

Theorem 1.4 ([66], Th. 19). For T ≥ 2,

|N(T )− F (T )| < R(T ).

Zeros on the Critical Line σ = 1/2

Here we present a chronological review of some significant work which have been

done about the zeros on the critical line.

• 1914: Hardy proved that there are infinitely many roots of ζ(s) = 0 on the

line <(s) = 1/2 ([34]).

• 1921: Hardy and Littlewood proved that the number of roots on the line

segment from 1/2 to 1/2 + iT is at least KT for some positive constant K

and all sufficiently large T ([35]).

• 1942: Selberg proved that the number of such roots is at least KT log T for

some positive constant K and all sufficiently large T ([71], [23, p. 226]).

• 1974: N. Levinson proved

N0(T + U)−N0(T ) > C{N(T + U)−N(T )},

where N0(T ) is the number of zeros of ζ(s) of the form s = 1
2

+ it, 0 < t ≤ T

and U = T (log(T/2π))−10 and C = 1/3 ([53], [45]).

• 1979: D.R. Heath-Brown proved that the number of simple zeros is at least

KT log T for some positive constant K and all sufficiently large T ([38]).

• 1989: Conrey proved that at least 40% of the zeros of the Riemann zeta

function are on the critical line ([14], [15]).

• 2011: Bui et al. proved that at least 41.05% of the zeros of the Riemann

zeta function are on the critical line ([9]).
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1.1.8 Bounds of ζ(s)

Bounds of ζ(σ + it) for σ ≥ 1.

In the Introduction (see formula 0.2) it is shown that

|ζ(s)| ≤ σ

σ − 1
.

However, this bound is much greater than |ζ(s)| when σ is close to 1. There are

better upper bounds as the following theorems state. For instance,

Theorem 1.5 ([24], p. 46). There exist absolute constants c1, c2, c3, c4, A and B

such that for all σ ≥ 1 and all |t| ≥ 8, we have

|ζ(σ + it)| ≤ c1 log |t|,

|ζ ′(σ + it)| ≤ c2 log2 |t|,

|ζ(σ + it)|−1 ≤ c3 logA |t|,

|ζ ′/ζ(σ + it)| ≤ c4 logB |t|.

One can choose in particular c1 = 4e, c2 = 6e, c3 = 16(6e)7, c4 = 16(6e)8, A = 7

and B = 9.

Size of ζ(σ + it) near to σ for σ < 1

For this case the following theorem is known.

Theorem 1.6 ([24], p. 44). Let θ be a real number such that 0 < θ < 1. For all

σ ≥ θ and all |t| ≥ 1

|ζ(σ + it)| ≤ 7

4

|t|1−θ

θ(1− θ)
,

|ζ ′(σ + it)| ≤ |t|1−θ

θ(1− θ)

(
log |t|+ 1

θ
+

5

4

)
.

In the next section we will study the size (absolute value) of zeta function at

points that are symmetric about the critical line and lie inside the critical strip.

1.2 On an Inequality for the Riemann Zeta Func-

tion in the Critical Strip

During the study of the Riemann zeta-function, observing its graphs and looking

for some relation between the RH and the size of the Riemann zeta function, we
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encountered an interesting problem for the estimation of its size in the critical

strip, which is as follows:

|ζ(1− s)| ≤ |ζ(s)|, (0 < σ < 1/2, |t| ≥ 6.5).

Later we found that the same problem has been stated and proved independently

by Spira [74] and Dixon-Schoenfeld [19] in 1960’s. However, our method in the

proof has some advantages, involving power inequalities related to an infinite prod-

uct for π and formula (1.2) for Euler’s gamma-function instead of the use of Stir-

ling’s asymptotic formula ([17], [50, p. 530]). Therefore, we state the main result

of this section by the following

Theorem 1.7. Let s = σ + it, and |t| ≥ 12. Then

|ζ(1− s)| ≤ |ζ(s)|, for 0 < σ <
1

2
, (1.11)

where the equality takes place only if ζ(s) = 0.

1.2.1 Auxiliary Lemmas

In order to prove Theorem 1.7, we will need some auxiliary elementary inequalities

involving rational and logarithmic functions. Precisely, we have (see [54], §2)

1

x+ 1
< log

(
1 +

1

x

)
<

1

x
, (x < −1, or x > 0), (1.12)

1

x+ 1
2

< log

(
1 +

1

x

)
, x > 0, (1.13)

x(2 + x)

2(1 + x)
< log(1 + x) <

2x

2 + x
, (−1 < x < 0). (1.14)

2x

2 + x
< log(1 + x) <

x(2 + x)

2(1 + x)
, (x > 0). (1.15)

Next we give some inequalities whose proofs are based on elementary calculus.

Lemma 1.8. For any t ≥ 1(
1 +

1

tx+ t− 1

)t
≤ 1 +

1

x
, (x ≤ −1, x > 0), (1.16)

(
1 +

x

t

)t
≤ 1 +

2tx

(1− t)x+ 2t
, (0 ≤ x ≤ 2). (1.17)
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Finally, for 0 ≤ a ≤ 1(
1 +

1

x

)a
≥ 1 +

a

x+ 1− a
, (x ≤ −1, x > 0), (1.18)

where the equality holds only if a = 0, 1 or x = −1, and(
1 +

1

x

)a
≥ 1 +

a

x+ 1−a
2

, (x > 0), (1.19)

(
1 +

1

x

)a
≤ 1 +

a

x+ 1−a
2

, (x ≤ −1), (1.20)

where it becomes equality only if a = 0, 1.

Proof. In order to prove (1.16), let

f(t) =

(
1 +

1

tx+ t− 1

)t
−
(

1 +
1

x

)
, (x ≤ −1, x > 0).

Then its derivative is

f ′(t) =

(
1 +

1

tx+ t− 1

)t(
log

(
1 +

1

tx+ t− 1

)
− 1

tx+ t− 1

)
.

Calling inequality (1.12), it is easily seen that f ′(t) < 0. Therefore f(t) is a

decreasing function and f(1) = 0. Hence f(t) < 0 for t > 1. To verify (1.17),

observe that conditions t ≥ 1 and 0 ≤ x ≤ 2 imply the positiveness of both sides

of the inequality, which is equivalent to(
1 +

x

t

)t(
1 +

2tx

(1− t)x+ 2t

)−1

≤ 1, (0 ≤ x ≤ 2, t ≥ 1).

Hence, denoting the left-hand side of the latter inequality by g(x), one obtains

g′(x) =

(
1 + x

t

)t
((1 + t)x+ 2t)2

(1− t2)x2 ≤ 0, t ≥ 1.

Since g′(x) ≤ 0, then g(x) ≤ g(0) = 1 for x ≥ 0. The equality in (1.17) holds

for x = 0 or t = 1. To prove (1.18), one replace t = 1/a in (1.16). The proof of

(1.19) and (1.20) is straightforward and similar, invoking with inequalities (1.15)

and (1.14).

Lemma 1.9. Let 0 < σ < 1/2, t ∈ R and x ≥ (1 +
√

3)/4. Then

(2x+ 1− σ)2 + t2

(2x+ σ)2 + t2
<

{(
2x+ 1

2x

)2
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×
(

1− (1 + 4x)((−1 + σ)σ + t2)

(1 + 2x)2((−1 + σ)σ + t2 + 4x2)

)}1−2σ

. (1.21)

If t ≥ 1/2, one has

(1− σ)2 + t2

σ2 + t2
<

(
1 +

1

(−1 + σ)σ + t2

)1−2σ

. (1.22)

Finally, for t ≥ 12, the following inequality holds(
(1− σ)2 + t2

σ2 + t2

) 3∏
n=1

(2n+ 1− σ)2 + t2

(2n+ σ)2 + t2
<

(
1

4

3∏
n=1

(
2n+ 1

2n

)2
)1−2σ

. (1.23)

Proof. Let 1− 2σ = 1/y. Then (1.21) is equivalent to(
1 +

4(1 + 4x)

y((−1/y + 1 + 4x)2 + 4t2)

)y
< 1 +

4(1 + 4x)y2

1 + (−1 + 4t2 + 16x2)y2
. (1.24)

It is not difficult to verify that

0 <
4(1 + 4x)

(−1/y + 1 + 4x)2 + 4t2
≤ 2, (x ≥ 1 +

√
3

4
, t ∈ R). (1.25)

But relation (1.24) is just inequality (1.17) where

x :=
4(1 + 4x)

(−1/y + 1 + 4x)2 + 4t2
, t := y.

So (1.21) is proved. In the same manner one can establish (1.22). To prove (1.23)

it is enough to verify the following inequality(
1 +

1

(−1 + σ)σ + t2

) 3∏
n=1

(
1− (1 + 4n)((−1 + σ)σ + t2)

(1 + 2n)2((−1 + σ)σ + t2 + 4n2)

)
<

1

4
.

Its left-hand side is increasing in σ and decreasing in t in the strip ]0, 1/2[×]1/2,∞[.

Therefore, one may put σ = 1/2 and t = 12 and see by straightforward computa-

tions that it is less than 1/4.

1.2.2 Proof of the Main Result

Proof of Theorem 1.7. As we saw in §1.1.5, the functional equation (1.6) for the

Riemann zeta-function can be written in the form (1.7).

Denoting g(s) = χ(s)−1, we have

g(s) = π
1
2
−s Γ(1

2
s)

Γ(1
2
− 1

2
s)
,
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and we will show that for 0 < σ < 1
2

and t ≥ 12, |g(σ + it)| < 1.

In fact taking the infinite product (1.1) for the sine function and letting z = 1
2
,

one arrives at the known Wallis’ formula

π

2
=
∞∏
n=1

(2n)2

(2n− 1)(2n+ 1)
.

Moreover, the Gauss infinite product formula for the gamma function (1.2) yields

Γ(1
2
s)

Γ(1
2
− 1

2
s)

=
1− s
s

∞∏
n=1

(
1

1 + 1
n

) 1
2
−s(1 + 1−s

2n

1 + s
2n

)
.

Hence

g(s) =

(
1− s
s

)
2

1
2
−s
∞∏
n=1

(
(2n)2

(2n− 1)(2n+ 1)

) 1
2
−s ∞∏

n=1

(
1

1 + 1
n

) 1
2
−s(1 + 1−s

2n

1 + s
2n

)

=

(
1− s
s

)
2

1
2
−s
∞∏
n=1

(
(2n)2n

(2n− 1)(2n+ 1)(n+ 1)

) 1
2
−s ∞∏

n=1

1 + 1−s
2n

1 + s
2n

=

(
1− s
s

)
2

1
2
−s
∞∏
n=1

(
(2n)n

(2n− 1)(n+ 1)

) 1
2
−s ∞∏

n=1

(
2n

2n+ 1

) 1
2
−s(1 + 1−s

2n

1 + s
2n

)

=

(
1− s
s

)
2

1
2
−s
∞∏
n=1

(
(2n)n

(2n− 1)(n+ 1)

) 1
2
−s ∞∏

n=1

(
2n

2n+ 1

) 1
2
−s(

2n+ 1− s
2n+ s

)

=

(
1− s
s

)
2

1
2
−s
∞∏
n=1

(
(2n+ 1)n

(2n− 1)(n+ 1)

) 1
2
−s ∞∏

n=1

(
2n

2n+ 1

)1−2s(
2n+ 1− s

2n+ s

)
.

Put

f(s) = 2
1
2
−s
∞∏
n=1

(
(2n+ 1)n

(2n− 1)(n+ 1)

) 1
2
−s

,

and

h(s) = h1(s)h2(s),

where

h1(s) =
1− s
s

, h2(s) =
∞∏
n=1

(
2n

2n+ 1

)1−2s
2n+ 1− s

2n+ s
.

Plainly, for any N one has

N∏
n=1

(2n+ 1)n

(2n− 1)(n+ 1)
=

2N + 1

N + 1
,

and so
∞∏
n=1

(2n+ 1)n

(2n− 1)(n+ 1)
= 2.
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Hence

|f(s)| = 21−2σ.

Therefore, it is sufficient to show that for 0 < σ < 1
2

and t ≥ 12

|h(s)| < 22σ−1. (1.26)

Indeed, |h1(s)| is a decreasing function with respect to σ and t for 0 < σ < 1/2

and t > 0. Meanwhile

|h2(s)| =
∞∏
n=1

(
2n

2n+ 1

)1−2σ ∣∣∣∣2n+ 1− s
2n+ s

∣∣∣∣ , (1.27)

is increasing with respect to σ in the strip (σ, t) ∈]0, 1/2[×[1/2,∞[, and decreasing

with respect to t in the strip (σ, t) ∈]0, 1/2[×R+.

Denoting by

h2,n(σ, t) =

(
2n

2n+ 1

)1−2σ ∣∣∣∣2n+ 1− (σ + it)

2n+ (σ + it)

∣∣∣∣ ,
the general term of the product and assuming for now

h2,n(σ, t) < 1, (0 < σ <
1

2
, t ≥ 0), (1.28)

we easily come out with the inequality

N+1∏
n=1

h2,n(σ, t) <
N∏
n=1

h2,n(σ, t), (0 < σ <
1

2
, t ≥ 0).

To verify (1.28), we need to show that(
1 +

1

2n

)1−2σ

>

√
(2n+ 1− σ)2 + t2

(2n+ σ)2 + t2
, t ≥ 0. (1.29)

In fact,
(2n+ 1− σ)2 + t2

(2n+ σ)2 + t2
= 1 +

(1− 2σ)(4n+ 1)

(2n+ σ)2 + t2
. (1.30)

Hence inequality (1.29) yields(
1 +

1

2n

)1−2σ

>
2n+ 1− σ

2n+ σ
≥

√
(2n+ 1− σ)2 + t2

(2n+ σ)2 + t2
. (1.31)

However,
2n+ 1− σ

2n+ σ
= 1 +

1− 2σ

2n+ σ
.

So the first inequality in (1.31) follows immediately from (1.19), letting x = 2n

and a = 1− 2σ. Thus we get inequality (1.28).
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Further, we show that {h2,n(σ, t)}∞n=1 is an increasing sequence for any (σ, t) ∈
]0, 1/2[×R. To do this, we consider the function H2(y) = h2,y(σ, t) and differentiate

it with respect to y. Hence by straightforward calculations one derives

H ′2(y) =

1− 2σ

y(2y + 1)

(
2y

2y + 1

)1−2σ

((2y + σ)2 + t2)2

√
(2y + 1− σ)2 + t2

(2y + σ)2 + t2

×
{

(2y + 1− σ)(1− σ)σ(2y + σ)

+(1 + 6y(1 + 2y)− 2(1− σ)σ)t2 + t4
}
.

Since

(2y + 1− σ)(1− σ)σ(2y + σ) + (1 + 6y(1 + 2y)− 2(1− σ)σ)t2 + t4

≥ (2y + 1− σ)(1− σ)σ(2y + σ) > 0,

we find that the derivative is positive, and therefore H2(y) is increasing for y > 0.

Now fixing t ≥ 1/2 one justifies that h2,n(σ, t) is increasing by σ. Precisely,

∂

∂σ
h2,n(σ, t) =

(
2n

2n+ 1

)1−2σ

/

∣∣∣∣2n+ 1− (σ + it)

2n+ (σ + it)

∣∣∣∣
×
{
− (1 + 4n)(4n2 + 2n+ σ − σ2 + t2)

+2((2n+ 1− σ)2 + t2)((2n+ σ)2 + t2) log(1 +
1

2n
)
}

and we achieve the goal, showing that the latter multiplier is positive. But this is

true due to inequality (1.13), because it is greater than

−(1− 2σ)2(2n+ 1− σ)(2n+ σ) + (8n(1 + 2n) + 3− 8(1− σ)σ)t2 + 4t4

1 + 4n

≥ 1 + (1− σ)σ(8n(1 + 2n)− 3 + 4(1− σ)σ)

1 + 4n
> 0, (0 < σ < 1/2, t ≥ 1/2).

Returning to (1.27) we conclude that |h2(σ, t)| is increasing with respect to σ for

0 < σ < 1
2

and t ≥ 1/2, and by (1.30) it is decreasing with respect to t for

0 < σ < 1
2

and t > 0.

Since

|hN(s)| = |1− s
s
|
N∏
n=1

(
2n

2n+ 1

)1−2σ ∣∣∣∣2n+ 1− s
2n+ s

∣∣∣∣ (1.32)
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is decreasing by N , one has

|h(s)| ≤ |hN(s)|.

As |hN(s)| is decreasing by t, it is enough to show that

|hN(s)| < 22σ−1 for (t = 12, and N = 3)

and this has been established in (1.23). Moreover, since ζ(s) is reflexive with

respect to the real axis, i.e., ζ(s) = ζ(s), inequality (1.11) holds also for t ≤ −12.

Therefore, Theorem 1.7 is proved.

Remark 1.10. A computer simulation suggests that the main result is still valid

for t ∈]6.5, 12[ (See Figure 1.1). However, a direct proof by this approach is more

complicated, because to achieve the goal we should increase the number N of terms

in the product (1.32).

Figure 1.1: The graph of |g(s)| for 6 < t < 12.

1.2.3 An Application to the RH

Motivating our study of the size of ζ(s) and similar to [74], we apply the results

of this chapter to the Riemann hypothesis. We have

Proposition 1.11. The RH is true if and only if

|ζ(1− s)| < |ζ(s)|, for (0 < σ <
1

2
, |t| > 6.5).
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As it is known [20], zeros of the derivative ζ ′(s) of Riemann’s zeta-function

are connected with the behavior of zeros of ζ(s) itself. Indeed, Speiser’s theorem

[73] states that the RH is equivalent to ζ ′(s) having no zeros on the left side of

the critical line. Thus, one can get further tools to study RH, employing these

properties.

We will formulate a sufficient condition for the RH to be true.

Proposition 1.12. If

∂

∂σ
|ζ(s)|2 < 0, for (0 < σ <

1

2
, |t| > 6.5), (A)

then the RH is true.

Proof. In fact, if the RH were not true, then by Speiser’s theorem [73], there exists

a number s ∈]0, 1/2[×R, such that ζ ′(s) = 0. Hence ∂
∂σ
|ζ(s)|2 = 0.

Finally in this chapter we conjecture the necessity of (A).

Conjecture. The condition (A) is also necessary for the validity of the RH.
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Chapter 2

Chebyshev’s Functions, Improved

Bounds and the RH
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2.1 Introduction and Preliminary Results

An integer greater than 1 is called prime if it is not a multiple of any smaller

integers greater than 1. These numbers are important since they are the building

blocks for integers. The fundamental theorem of arithmetic states that every

integer greater than 1 is a product of prime numbers and this factorization is

unique up to rearrangement. There are certain questions arising in the studying

of prime numbers. For example: How many primes are there? How many primes

are there less than a given number x? What is the distribution of prime numbers?

26



x Count of primes < x
∫

dn
logn

Difference

500 000 41 556 41 606.4 50.4

1 000 000 78 501 78 627.5 126.5

1 500 000 114 112 114 263.1 151.1

2 000 000 148 883 149 054.8 171.8

2 500 000 183 016 183 245.0 229.0

3 000 000 216 745 216 970.6 225.6

Table 2.1: Prime counting function and logarithmic integral[23, p. 2]

How many primes are there which the difference is 2 (twin prime conjecture)?

Every even integer greater than 2 can be expressed as the sum of two primes

(Goldbach’s conjecture)? Are there infinitely many Mersenne primes (primes of

the form 2n − 1)? etc (see [62, Introduction]).

About 300 BC it was proved in Euclid’s Elements that there are infinitely many

prime numbers. Euler was the first one who discovered fundamental formula (0.3)

as an analytic version of the fundamental theorem of arithmetic, and as a corollary

it gives ∑
p

1

p
=∞.

Let π(x) denote as usual the number of primes not exceeding x. In 1808 Legendre

conjectured that

π(x) ∼ x

log x− A(x)
,

where limx→∞A(x) ≈ 1.08366.

It was conjectured by Gauss that π(x) is asymptotically Li(x) (see [29]). Cheby-

shev ([12], [75]) proved the asymptotic estimate

(A0 + o(1))
x

log x
≤ π(x) ≤

(
6

5
A0 + o(1)

)
x

log x
as x→∞,

with

A0 = log(21/231/351/5301/30) ≈ 0.92129. (2.1)

He also pointed out that

lim inf
x→∞

π(x)

x/ log x
≤ 1 ≤ lim sup

x→∞

π(x)

x/ log x
.

Moreover, he proved the following result in a beautiful way
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Theorem 2.1 ([12], p. 379). For all x > 1

ϑ(x) <
6

5
A0x− A0x

1
2 +

5

4 log 6
log2 x+

5

2
log x+ 2

ϑ(x) > A0x−
12

5
A0x

1
2 − 5

8 log 6
log2 x− 15

4
log x− 3, (2.2)

where A0 is defined in (2.1) and ϑ(x) is the first Chebyshev’s function and it is

defined by

ϑ(x) =
∑
p≤x

log p. (2.3)

As we mentioned in Chapter 1, in 1859 Riemann [63] started his paper with

the fundamental formula of Euler (0.3). He defined the zeta function for complex

numbers with real part σ greater than 1 and using analytic continuation to the

whole complex plane except s = 1. In his paper he also gives an explicit formula

which we will talk about later. Recall from §1.1.7 that J. Hadamard [33] and C. J.

de la Vallée Poussin [18], independently and using methods of complex analysis,

proved that there is no zeros on the line σ = 1. This fact implies the prime number

theorem (PNT), i.e.,

lim
x→∞

π(x) log x

x
= 1.

Finally in 1949, an elementary proof (without using complex analysis) of PNT was

given by Selberg ([72]) and Erdős ([25]). The PNT can be expressed in different

ways. Namely

Theorem 2.2 ([4], p. 79). The following relations are logically equivalent:

lim
x→∞

π(x) log x

x
= 1,

lim
x→∞

ϑ(x)

x
= 1,

lim
x→∞

ψ(x)

x
= 1,

where

ψ(x) =
∑
pm≤x

log p,

The Riemann zeta function has a significant influence on the law of distribution

of primes. Riemann introduced a tool which does this task and it is called explicit

formula. This explicit formula gives a link between non-trivial zeros of the Riemann

zeta function and Chebyshev’s ψ function (see [45], [29]). Namely

ψ(x) = x−
∑
ρ

xρ

ρ
− ζ ′(0)

ζ(0)
− 1

2
log(1− 1

x2
), (x > 1, x 6= pm), (2.4)
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where ∑
ρ

xρ

ρ
= lim

T→∞

∑
|γ|≤T

xρ

ρ
, (ζ(ρ) = 0, 0 < <ρ < 1).

and when x = pm, then in the left-hand side of (2.4) put ψ(x)− 1
2
Λ(x), where for

any integer n ≥ 1

Λ(n) =

{
log p, if n = pm for some prime p and some m ≥ 1;

0, otherwise.

The explicit expression (2.4) was proved by H. von Mangoldt in 1895.

As we see in the explicit formula (2.4), the size of the error term in PNT has

a link to

Θ = sup{<ρ : ζ(ρ) = 0}. (2.5)

By the functional equation for zeta function we know that the non-trivial zeros are

in the critical strip, symmetric about the line σ = 1/2 and therefore 1/2 ≤ Θ ≤ 1.

Also Θ = 1/2 if and only if RH is true ([44, p. 82]). Until now no upper bound

Θ ≤ 1 − δ with δ > 0 is known. As a first application of explicit formula (2.4),

one has

Theorem 2.3 (cf. [44], Th. 30).

ψ(x) = x+O(xΘ log2 x),

π(x) = li(x) +O(xΘ log x).

2.1.1 Explicit Bounds for Distribution of Primes

Also, mathematicians have worked on the numerical verification of the RH and

finding better zero-free region for the Riemann zeta function. The proof of Hadamard

and de la Vallée Poussin (see [75], [6]) gives that all non-trivial zeros of zeta func-

tion lie in the region

σ ≤ 1− c

log9(3 + |t|)
for some c > 0. Later de la Vallée Poussin improved this result to

σ ≤ 1− c

log(3 + |t|)
.

Vinogradov and Korobov extended this zero free region and showed that

σ ≤ 1− c0

(log(3 + |t|))2/3(log log(3 + |t|))1/3
.
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Rosser and Schoenfeld are among the mathematicians who have made much ef-

forts on determining zeros and an explicit zero free region of the Riemann zeta

function. They give a explicit error term in prime number theorem employing the

computation of the zeros on critical line and zero free region in 1975 and 1976 (see

[68], [70]). More precisely, they determined that the first 3 502 500 zeros lie on the

critical line and proved

Theorem 2.4. There is no zeros on the region

σ ≥ 1− 1

R log |t/17|
, R = 9.645 908 801. (2.6)

Then they employed some estimates and deduced the explicit error term in the

prime PNT given by

Theorem 2.5 ([68], Th. 2). If log x ≥ 105, then

|ψ(x)− x| < xε(x),

where one may take either

ε(x) = 0.257634

{
1 +

0.96642

X

}
X3/4e−X , X =

√
log x/R,

where R is defined in (2.6), or simply by replacing
√

log x/R

ε(x) = 0.110123

{
1 +

3.0015√
log x

}
(log x)3/8e−

√
(log x)/R.

The above bounds were improved by Schoenfeld. Precisely

Theorem 2.6 (cf. [70], Th. 11). Let R = 9.645 908 801. Then

|ψ(x)− x| < xε0(x), (x ≥ 17),

|ϑ(x)− x| < xε0(x), (x ≥ 101),

where

ε0(x) =

√
8

17π
X1/2e−X , X =

√
log x/R.

and R is defined in (2.6).

In 2010 Dusart [21] proved the explicit estimates for the functions of distribu-

tion of primes. Some of them will be employed in the sequel. Namely it has
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Proposition 2.7 (cf. [21], Prop. 3.1, 3.2). The following estimates hold

ψ(x)− ϑ(x) < 1.00007
√
x+ 1.78 3

√
x, (x > 0),

ψ(x)− ϑ(x) > 0.9999
√
x, (x ≥ 121).

Theorem 2.8 ([21]). One has

|ϑ(x)− x| < ηk
x

logk x
, (x ≥ xk),

with

k 0 1 1 2 2 2 2

ηk 1 1.2323 0.001 3.965 0.2 0.05 0.01

xk 1 2 908994923 2 3594641 122568683 7713133853

and

k 3 3 3 3 4

ηk 20.83 10 1 0.78 1300

xk 2 32321 89967803 158822621 2

In 1930 Hoheisel [41] proved that there is a number θ with 1 − 1/33000 =

θ0 < θ < 1 such that for any ε > 0 the interval (x, x + xθ+ε) contains a prime for

x > x0(ε). Heilbronn [39] showed that one may take θ0 = 1− 1/250. Ingham [43]

obtained that θ0 = 5/8. Montgomery [55] gets θ0 = 3/5. Later Huxley [42] gave

θ0 = 7/12. Iwaniec and Jutila [46] gives θ = 13/23. Later Iwaniec and Pintz [47]

found that θ0 = 23/42. As we see all results above are implicit and they hold for

x ≥ x(θ). As we stated before, we concerned in this chapter with explicit bounds.

Dusart in [22] and [21] gives the following estimates for the intervals that have at

least one prime:

Lemma 2.9 ([22]). For k ≥ 463,

pk+1 ≤ pk

(
1 +

1

2 log2 pk

)
.

where pk is the k-th prime number.

Proposition ([21]). For all x ≥ 396738, there exists a prime p such that

x < p ≤ x

(
1 +

1

25 log2 x

)
.
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Theorem 2.10 ([21]).

π(x) ≥ x

log x

(
1 +

1

log x

)
, (x ≥ 599),

π(x) ≤ x

log x

(
1 +

1.2762

log x

)
, (x > 1).

Mertens’ second theorem states that the asymptotic form of the harmonic series

for the sum of reciprocal primes is given by (see [75, §8])

lim
x→∞

(∑
p≤x

1

p
− log log x−B

)
= 0.

where B is Meissel-Mertens constant and it is defined by (see [44, p. 23])

B = γ +
∑
p

{
log

(
1− 1

p

)
+

1

p

}
≈ 0.261497212847643. (2.7)

One can derive the following formula for sum of reciprocal over primes by (see [67,

p. 74])∑
p≤x

1

p
− log log x−B =

ϑ(x)− x
x log x

−
∫ ∞
x

{ϑ(t)− t}
(

1

t2 log2 t
+

1

t2 log t

)
dt, (2.8)

Therefore∣∣∣∣∣∑
p≤x

1

p
− log log x−B

∣∣∣∣∣ ≤ |ϑ(x)− x|
x log x

+

∫ ∞
x

|ϑ(t)− t|
(

1

t2 log2 t
+

1

t2 log t

)
dt

<
ηk

logk+1 x
+

∫ ∞
x

ηk

logk t

(
1

t log2 t
+

1

t log t

)
dt

=
ηk

k logk x
+

(
1 +

1

k + 1

)
ηk

logk+1 x
. (2.9)

Taking k = 2 and η = 0.2 for x ≥ 359464 and checking by computer for smaller

values:

Theorem 2.11 ([21]). We have∑
p≤x

1

p
− log log x−B ≥ −

(
1

10 log2 x
+

4

15 log3 x

)
, (x > 1),

∑
p≤x

1

p
− log log x−B ≤ 1

10 log2 x
+

4

15 log3 x
, (x ≥ 10372),

where B is Meissel-Mertens constant.
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Taking the finite product in Euler product formula up to x

lim
x→∞

{
log x

∏
p≤x

(
1− 1

p

)}
= e−γ.

This result is known as Mertens’ third theorem is (see [75, §8]; [37, p. 173]). Using

the estimates in the previous theorem and taking exponential of both sides of the

inequalities for x ≥ 3 594 641 and checking by computer for smaller values:

Theorem 2.12 (cf. [21]). We have∏
p≤x

(
1− 1

p

)
<

e−γ

log x

(
1 +

0.2

log2 x

)
, (x > 1),

∏
p≤x

(
1− 1

p

)
>

e−γ

log x

(
1− 0.2

log2 x

)
, (x ≥ 2973),

∏
p≤x

p

p− 1
> eγ log x

(
1− 0.2

log2 x

)
, (x > 1),

∏
p≤x

p

p− 1
< eγ log x

(
1 +

0.2

log2 x

)
, (x ≥ 2973).

2.1.2 Irregularities of the Distribution of Primes

As we observed in the previous section, there is a certain regularity in the distri-

bution of primes. However, with these results one cannot guarantee too much. For

instance, is it true that π(x) < li(x) for all x? It was Littlewood who proved the

following interesting theorem which exhibit the irregularity in the distribution of

prime numbers, from which one can deduce that (using Theorem 2.13 and relations

(2.10) and (2.11) or Corollary 2.14 and formula (2.12)) π(x) − li(x) changes sign

for infinitely many x.

Theorem 2.13 ([44], p. 100). We have

ψ(x)− x = Ω±(x1/2 log log log x), as x→∞.

Let

Π(x) = π(x) +
∞∑
m=2

1

m
π(x

1
m ). (2.10)

The following formula gives the relation between Π(x) and ψ(x)

Π(x) =
∑

2≤n≤x

Λ(n)

log n
=
ψ(x)

log x
+

∫ x

2

ψ(t)

t log2 t
dt. (2.11)

Combining Theorem 2.13 and Proposition 2.7 this irregularity is transfered to

ϑ(x); that is
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Corollary 2.14. We have

ϑ(x)− x = Ω±(x1/2 log log log x), as x→∞.

The following formula makes a link between pi(x) and ϑ(x)

π(x) =
ϑ(x)

log x
+

∫ x

2

ϑ(t)

t log2 t
dt. (2.12)

2.2 A Sufficient Condition for the RH

Let

g(x) = eγ log ϑ(x)
∏
p≤x

(
1− 1

p

)
.

Nicolas [56] proved that

(i) under RH, g(x) < 1 for x ≥ 2;

(ii) if RH is false, then there exists a sequence of values x tends to +∞ for

which g(x) < 1, and there exists a sequence of values x tends to +∞ for

which g(x) > 1. If we denote by Θ (see 2.5) the upper bound of the real

parts of the zeros of the Riemann zeta function, then, for any b, such that

1−Θ < b < 1/2, we have

log g(x) = Ω±(x−b),

that is to say,

lim sup xb log g(x) > 0 and lim inf xb log g(x) < 0.

In the following proposition we prove a result similar to (ii) above for ψ function.

Precisely

Proposition 2.15. Let

h(x) = eγ logψ(x)

∏
p≤x(1− 1/p)∏

1
2

√
x<p≤x(1− 1/p2)

If the RH is not true, then h(x) < 1 for infinitely many x and h(x) > 1 for

infinitely many x.
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Proof. Using Abel’s identity (Theorem 1.2) and Theorem 2.8 we get

log
∏
p>x

(
1− 1

p2

)
< − 1

x log x
+

4

x log2 x
,

log
∏
p>x

(
1− 1

p2

)
> − 1

x log x
− 4

x log2 x
.

Hence

log
∏

1
2

√
x<p≤x

(
1− 1

p2

)
< − 4√

x log x
+

32
√
x log2 x

,

log
∏

1
2

√
x<p≤x

(
1− 1

p2

)
> − 4√

x log x
− 32
√
x log2 x

.

Note that

ψ(x) = ϑ(x) +R(x), where R(x) =
∞∑
k=2

ϑ(x1/k).

Then applying Taylor’s formula to log log t one has

log logψ(x) ≤ log log ϑ(x) +
R(x)

ϑ(x) log ϑ(x)
,

log logψ(x) ≥ log log ϑ(x) +
R(x)

ϑ(x) log ϑ(x)
− R(x)2

ϑ(x)2 log ϑ(x)
,

where R(x) ∼
√
x according to Theorem 2.2. Therefore

log h(x) = log g(x) +

log logψ(x)− log log ϑ(x)− log
∏

√
x<p≤x

(
1− 1

p2

)
= Ω±(x−b) +O

(
1√

x log x

)
= Ω±(x−b), (1−Θ < b <

1

2
).

2.3 Improved Explicit Bounds for Chebyshev’s

Functions

2.3.1 Improved Explicit Bounds for Large Values of x

In this section we shall use the recent information about the number of zeros of the

Riemann zeta function that are all on the critical line up to some height and the

new zero free region. The RH has been verified until the 1013-th zero by Gourdon
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[31] (October 12th 2004). In 2005, Kadiri [48] gave an explicit zero free region for

zeta function. Indeed, she proved the following lemma which is used in the proofs

of the improved bounds in Theorems 2.19 and 2.20.

Lemma 2.16 ([48]). The Riemann zeta-function ζ(s) with s = σ + it does not

vanish in the region

σ ≥ 1− 1

R0 log |t|
, (|t| ≥ 2, R0 = 5.69693).

In other words, if ρ = β + iγ is a zero of Riemann zeta function, then

β < 1− 1

R0 log |γ|
, (|γ| ≥ 2, R0 = 5.69693).

Using these two recent statements we give a better explicit bound for the Cheby-

shev’s functions. The methods of proofs of theorems in this section are essentially

similar to those of Schoenfeld [70], therefore we consent to give just the sketch of

the proofs.

Recall that N(T ), F (T ) and R(T ) are defined as in §1.1.7. Choose A such that

F (A) = 1013. Then

A =2 445 999 556 030.342 362 641, (2.13)

logA =28.525 474 972. (2.14)

We also applied the following lemmas in the proofs of theorems for the order of

ψ(x) − x (i.e., Theorems 2.19 and 2.20). In the next lemma we use the same

method as in [65], letting r = 29 instead of r = 8 and get

Lemma 2.17. Let ρ = β + iγ denote the non-trivial zero of the Riemann zeta

function. Then

∑
ρ

1

|γ3|
< 0.00146435,

∑
ρ

1

γ4
< 7.43617 · 10−5,

∑
ρ

1

|γ5|
< 4.46243 · 10−6,

∑
ρ

1

γ6
< 2.88348 · 10−7,

∑
ρ

1

|γ7|
< 1.93507 · 10−8.

Define for x ≥ 1

X =

√
log x

R0

, R0 = 5.69693. (2.15)
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Also for positive ν, positive integer m, and non-negative reals T1 and T2, define

Rm(ν) ={(1 + ν)m+1 + 1}m, (2.16)

S1(m, ν) =2
∑
β≤1/2

0<γ≤T1

2 +mν

2|ρ|
, (2.17)

S2(m, ν) =2
∑
β≤1/2
γ>T1

Rm(ν)

νm|ρ(ρ+ 1) · · · (ρ+m)|
, (2.18)

S3(m, ν) =2
∑
β>1/2

0<γ≤T2

(2 +mν) exp(−X2/ log γ)

2|ρ|
, (2.19)

S4(m, ν) =2
∑
β>1/2
γ>T2

Rm(ν) exp(−X2/ log γ)

νm|ρ(ρ+ 1) · · · (ρ+m)|
, (2.20)

and

φm(y) =
e−X

2/ log y

ym+1
,

q(y) =
0.137 log y + 0.443

y log y log(y/2π)
. (2.21)

The following lemma is the basis for finding estimates for Chebyshev’s function in

the proof of Rosser and Scoenfeld [68], [70].

Lemma 2.18 ([68], Lemma 8). Let T1 and T2 be non-negative real numbers. Let

m be a positive integer. Let x > 1 and 0 < δ < (x− 1)/(xm). Then

1

x

∣∣∣ψ(x)− {x− log 2π − 1

2
log

(
1− 1

x2

)
}
∣∣∣ (2.22)

≤ 1√
x
{S1(m, δ) + S2(m, δ)}+ S3(m, δ) + S4(m, δ) +

mδ

2
.

Therefore, to compute the estimates for error term we need only to minimize

the terms in the right-hand side of (2.22).

Note that if we replace 17 with 1 in the proof of Theorem 2.6 and adjust the

terms in its proof when it is necessary, we could prove in a similar manner the

following theorem

Theorem 2.19. Let

ε0(x) =
√

8/πX1/2e−X .
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Then

|ψ(x)− x| < xε0(x), (x ≥ 3)

and

|ϑ(x)− x| < xε0(x), (x ≥ 3).

As you may observe the error term in Theorem 2.6 has the coefficient
√

8/(17π)

which is smaller than
√

8/π in the next theorem and therefore gives a better

bound. However, as we use a better zero-free region, we will get a better bound

when x ≥ e255.

2.3.2 Improved Explicit Bounds for Moderate Values of x

As in Theorem 2.19, the role of A the verified height of RH (defined in (2.13))

was not vigorous, but it has more efficient role in estimating of the Chebyshev’s

function for moderate values of x using the next theorem. Let

T0 =
1

δ

(
2Rm(δ)

2 +mδ

)1/m

, (2.23)

G(D) =
∑

0<γ≤D

1

(γ2 + 1/4)1/2
− 1

4π

{(
log

D

2π
− 1

)2

+ 1

}

+
1

D

{
0.137 logD + 0.443

(
log logD +

1

logD

)
+ 2.6−N(D)

}
,

and

C(D) = 4π

(
0.137 +

0.443

logD

)
.

Theorem 2.20 ([70], Lemma 9∗). Let T0 be defined as above and satisfy T0 ≥ D,

where 2 ≤ D ≤ A. Let m be a positive integer and let δ > 0. Then

S1(m, δ) + S2(m, δ) < Ω∗1,

where

Ω∗1 =
2 +mδ

4π

{(
log

T0

2π
+

1

m

)2

+ 4πG(D) +
1

m2
− mC(D)

(m+ 1)T0

}
(2.24)

and G(D) and C(D) are defined as above. Moreover, if

Ω∗3 =
1

2π
h3(T2) + e3(T2), T2 ≥ A, (2.25)
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where

h3(T ) =
2 +mδ

2

∫ T

A

φ0(y) log
y

2π
dy +

Rm(δ)

δm

∫ ∞
T

φm(y) log
y

2π
dy

and

e3(T ) =q(T )

{
−2 +mδ

2

∫ T

A

φ0(y) log
y

2π
dy +

Rm(δ)

δm

∫ ∞
T

φm(y) log
y

2π
dy

}
+R(T )φ0(T ){2 +mδ + 2

Rm(δ)

(δT )m
},

then

|ψ(x)− x| < ε∗0x, (x ≥ eb),

where

ε∗0 = Ω∗1e
−b/2 + Ω∗3 +

m

2
δ + e−b log 2π. (2.26)

Table 3.2 is made from the above Theorem.

2.4 Improved Explicit Bounds and Distribution

of Primes

Using Theorem 2.20 we can get a little better estimate for the first Chebyshev’s

function (2.3).

Proposition 2.21. Let xk ≥ 8 · 1011. Then

|ϑ(x)− x| < η′k
x

logk x
, (x ≥ xk),

where

k 0 1 2 3 4

η′k 0.00002945957104 0.00082486799 0.0230963037 0.6466965035 1230

Proof. Let eb ≤ x < eb+1. Appealing to Proposition 2.7, we treat ϑ(x)− x in the

following way

ϑ(x)− x = ϑ(x)− ψ(x) + ψ(x)− x

< −0.9999
√
x+ xε∗0

=

(
−0.9999

logk x√
x

+ ε∗0 logk x

)
x

logk x
.
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In the same manner we find

ϑ(x)− x = ϑ(x)− ψ(x) + ψ(x)− x

> −1.00007
√
x− 1.78 3

√
x− xε∗0

=

(
−1.00007

logk x√
x
− 1.78

logk x
3
√
x2
− ε∗0 logk x

)
x

logk x
.

To estimate η′k, it is enough to choose x = eb+1 in each parenthesis. For instance,

to estimate η′1 in the interval [8 · 1011, e28), we have ε∗0 = 0.0000284888 (see com-

putations just before Table 3.2 at the end of thesis), and

ϑ(x)− x <
(
−0.9999

28√
e28

+ 0.0000284888(28)

)
x

log x
< 0.000774406

x

log x
,

ϑ(x)− x >
(
−1.00007

28√
e28
− 1.78

28
3
√
e2·28

− 0.0000284888(28)

)
x

log x

> −0.00082486799
x

log x
.

Continuing this process for all intervals [eb, eb+1) where b = 28, 29, . . . up to x =

e5200, we get the desired results.

Remark 2.22. The number 5200 in Table 3.2 is chosen as the last number, since

for x ≥ e5204 we obtain ε0 < ε∗0, therefore we can apply then Theorem 2.19.

Applying the previous proposition, we obtain the estimates for the function

π(x).

Proposition 2.23. Let x ≥ 8 · 1011. Then

π(x) <
x

log x

(
1 +

1.0796

log x

)
,

π(x) <
x

log x

(
1 +

1

log x
+

2.2703

log2 x

)
.

Proof. By Abel’s identity (Theorem 1.2)

π(x) =
ϑ(x)

log x
+

∫ x

2

ϑ(y)

y log2 y
dy

<
x

log x

(
1 +

η′k
logk x

)
+

∫ x

2

1

log2 y

(
1 +

η′k
logk y

)
dy. (2.27)

We are looking for inequality of this type:

π(x) < A2(x), (x ≥ 8 · 1011),
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where

A2(x) =
x

log x

(
1 +

c

log x

)
,

and c is a constant which will be determined in the following.

Let A1(x) be the right-hand side of (2.27). Therefore we must have A1(x) <

A2(x) for x ≥ 8 ·1011. To have this inequality it is enough to have A1(x0) ≤ A2(x0)

with x0 = 8 · 1011 and A′1(x) < A′2(x) for x ≥ x0. Indeed,

A′1(x) =
1

log x
+

2η′kx

logk+1 x
− η′k(−1 + x+ kx)

logk+2 x

and

A′2(x) =
1

log x
+
−1 + c

log2 x
− 2c

log3 x
.

We apply the case η′1 in Proposition 2.21, and get for x ≥ 8 · 1011

π(x) <
x

log x

(
1 +

1.0796

log x

)
or if we let

A2(x) =
x

log x

(
1 +

1

log x
+

c ′

log x

)
,

by a similar method we arrive at

π(x) <
x

log x

(
1 +

1

log x
+

2.2703

log2 x

)
.

Note that if the values of the function li(x) can be calculated in some way, we

could use the following formula

li(x)− li(2) =

∫ x

2

1

log y
dy =

[
y

log y
+

y

log2 y
+

2!y

log3 y
+

3!y

log4 y
+ · · ·+ j!y

logj+1 y

]x
2

+ (j + 1)!

∫ x

2

1

logj+2 y
dy, (j = 0, 1, . . .)

to compute the integral in (2.27) instead of the method of differential calculus

which we applied above.

In the next proposition we will determine the length of intervals which contain

at least one prime.

Proposition 2.24. For all x ≥ 492 227, there exist at least one prime p such that

x < p ≤ x

(
1 +

0.0297139

log2 x

)
.
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Proof. Since the first Chebyshev’s function has a jump of the size log p on a prime p,

for having a prime in the interval [x, y) it is enough to find y such that ϑ(y)−ϑ(x) >

0. Assume y = x
(

1 + αk

logk x

)
where k = 1, 2, 3, 4 and αk is a constant. Hence,

ϑ(y)− ϑ(x) > y

(
1− η′k

logk y

)
− x

(
1 +

η′k
logk x

)
>

x

logk x

{
αk

(
1− η′k

logk x

)
− 2η′k

}
.

If

αk >
2η′k

1− η′k/ logk x
,

then we get the desired condition. Now according to [70], p. 355

pn+1 − pn ≤ 652, for all pn ≤ 2.686 · 1012.

On the other hand, ε∗0 = 0.0000170896 (defined 2.26) for x ≥ x0 = 2.686 · 1012 .

From here we have

|ϑ(x)− x| < 0.0148566
x

log2 x
, (x ≥ x0).

Therefore,

α2 >
2(0.0148567)

1− (0.0148567)/ log2 x0

≈ 0.0297139.

For 5 254 433 ≤ x < 2.686 · 1012 we note that

0.0297139
x

log2 x
> 652.

For 492 227 ≤ x < 5 254 433 we check it by computer.

2.5 Explicit Estimates for
∏
p≤x

(1 + 1/p)

In this subsection we give bounds for
∏

p≤x(1 + 1/p).

First we determine some values for which we encounter later. Let

S(x) =
∑
p>x

{
log

(
1 +

1

p

)
− 1

p

}
=
∞∑
n=2

(−1)n−1

n

∑
p>x

1

pn
.

Hence, ∑
p>x

(
1

2p2
− 1

3p3

)
< −S(x) <

∑
p>x

1

2p2
.
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Using Abel’s identity (Theorem 1.2) and estimates for ϑ(x) in Proposition 2.8 one

obtains ∑
p>x

1

2p2
<

1

x log x

and ∑
p>x

(
1

2p2
− 1

3p3

)
>

1

2x log x
− 5

x log2 x
.

From ∏
p

(
1 +

1

p

)
=
∏
p

(
1− 1

p2

)
/
∏
p

(
1− 1

p

)
and definition of B in (2.7) we have∑

p

{
log

(
1 +

1

p

)
− 1

p

}
= log

6

π2
+ γ −B. (2.28)

Therefore,∑
p≤x

1

p
−B =

∑
p≤x

log

(
1 +

1

p

)
+
∑
p>x

{
log

(
1 +

1

p

)
− 1

p

}
− log

6

π2
− γ.

Now by (2.9)∣∣∣∣∣∑
p≤x

log

(
1 +

1

p

)
+ S(x)− log

6

π2
− γ − log log x

∣∣∣∣∣ < Ck(x), (2.29)

where Ck(x) is the right-hand side of (2.9). Expanding terms inside absolute value

(2.29), we get∑
p≤x

log

(
1 +

1

p

)
< log

6

π2
+ γ + log log x+ Ck(x)− S(x),

∑
p≤x

log

(
1 +

1

p

)
> log

6

π2
+ γ + log log x− Ck(x)− S(x).

We take exponential of both sides in each inequality, and using the estimate

1 + t < et <
1

1− t
, (t < 1) (2.30)

and noting that −S(x) is very small compared to the difference between the two

sides of latter estimate when t replace with Ck(x) < 1, so that it is negligible.

Thus we arrive at
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Proposition 2.25. We have∏
p≤x

(
1 +

1

p

)
<

6eγ

π2

1

1− Ck(x)
log x, (2.31)

∏
p≤x

(
1 +

1

p

)
>

6eγ

π2
{1− Ck(x)} log x. (2.32)

for all x ≥ xk where xk depends on ηk.

We can treat the proof of the Proposition 2.25 in a different way. In this method

we do not use the estimates for
∏

p(1− 1/p2),
∏

p(1− 1/p) or
∏

p≤x(1− 1/p).

Recall that for t > 0 we have the inequality (cf. 1.15)

1

t+ 1/2
< log

(
1 +

1

t

)
<

1

2

(
1

t
+

1

t+ 1

)
.

Let ∑
p≤x

{
log

(
1 +

1

p

)
− 1

2

(
1

p
+

1

p+ 1

)}
= −ax,

∑
p≤x

{
log

(
1 +

1

p

)
− 1

p+ 1/2

}
= bx.

It is clear that

ax + bx =
1

2

∑
p≤x

(
1

p
− 2

p+ 1/2
+

1

p+ 1

)
.

Therefore,

log
∏
p≤x

(
1 +

1

p

)
=
∑
p≤x

log

(
1 +

1

p

)
=

1

2

∑
p≤x

(
1

p
+

1

p+ 1

)
− ax

=
∑
p≤x

1

p
− 1

2

∑
p≤x

1

p(p+ 1)
− ax

< log log x+B + Ck(x)− 1

2

∑
p≤x

1

p(p+ 1)
− ax,

log
∏
p≤x

(
1 +

1

p

)
=
∑
p≤x

log

(
1 +

1

p

)
=
∑
p≤x

1

p+ 1/2
+ bx

=
∑
p≤x

1

p
− 1

2

∑
p≤x

1

p(p+ 1/2)
+ bx

> log log x+B − Ck(x)− 1

2

∑
p≤x

1

p(p+ 1/2)
+ bx.
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Taking exponential of both side in each inequality and using (2.30) we get the

bounds in the proposition.1

Corollary 2.26. We have∏
x<p≤y

(
1 +

1

p

)
<

log y

log x

{
1

1− Ck(x)− Ck(y)

}
, (x ≥ xk)

and ∏
x<p≤y

(
1 +

1

p

)
>

log y

log x
{1− Ck(x)− Ck(y)} , (x ≥ xk),

where xk depends on ηk.

Note that in this corollary, for simplicity, we used the estimates of first method

in the proof of Proposition 2.25.

1Continuing the second method we arrive at

log
∏

x<p≤y

(
1 +

1

p

)
< log log y − log log x+ Ck(x) + Ck(y)−

1

2

∑
x<p≤y

1

p(p+ 1)
− (ay − ax)

and

log
∏

x<p≤y

(
1 +

1

p

)
> log log y − log log x− Ck(x)− Ck(y)−

1

2

∑
x<p≤y

1

p(p+ 1/2)
+ (by − bx),

which are slightly better than the bounds in Corollary 2.26.
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Chapter 3

Extremely Abundant Numbers

and the RH

Contents
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3.6 Numerical Experiments . . . . . . . . . . . . . . . . . . . 77

3.1 Introduction and Background

There are several equivalent statements to the RH. Some of them are related to

the asymptotic behavior of arithmetic functions. In this chapter we will work on

Robin’s equivalence that is related to the behavior of sum of divisors σ(n) and its

ratio to n which can be expressed as (see 0.5)

σ(n)

n
=
∏
p|n

1− 1/pαk+1
k

1− 1/p
, where n =

r∏
k=1

pαk
k . (3.1)
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Indeed, Robin [64] proved that

Theorem 3.1. The RH is equivalent to inequality

σ(n)

n
< eγ log log n, (n > 5040), (3.2)

where γ is Euler’s constant.

Throughout this chapter, as Robin used in [64], we let

f(n) =
σ(n)

n log log n
. (3.3)

First we present a historical overview of the works which have been done on two

closely related arithmetic functions σ(n)
n

and n
φ(n)

, where φ(n) is Euler’s totient

function, which is defined as the number of positive integers not exceeding n that

are relatively prime to n.

In 1913, Gronwall [32] in his study of asymptotic maximal size for σ(n), found

that the order of σ(n) is always “very nearly n” (see [36], Th. 323), proving

Theorem 3.2 ([32]). Let f be defined by (3.3). Then

lim sup
n→∞

f(n) = eγ. (3.4)

Ramanujan in his unpublished manuscript [60] proved that if N is a generalized

superior highly composite number, i.e., a number of CA which we introduce in the

next section, then under the RH

lim inf
N→∞

(
σ(N)

N
− eγ log logN

)√
logN ≥− eγ(2

√
2 + γ − log 4π) ≈ −1.558,

and

lim sup
N→∞

(
σ(N)

N
− eγ log logN

)√
logN ≤− eγ(2

√
2− 4− γ + log 4π) ≈ −1.393.

Robin [64] demonstrated that

f(n) ≤ eγ +
0.648214

(log log n)2
, (n ≥ 3), (3.5)

where 0.648214 ≈ (7
3
−eγ log log 12) log log 12 and the left-hand side of (3.5) attains

its maximum at n = 12. In the same spirit, Lagarias [51] proved that the RH is

equivalent to the inequality

σ(n) ≤ eHn logHn +Hn, (n ≥ 1),
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where Hn =
∑n

j=1 1/j and it is called the n-th harmonic number.

Investigating upper and lower bounds of arithmetic functions, Landau ([52], pp.

216–219) obtained the following limits:

lim inf
n→∞

ϕ(n) log log n

n
= e−γ , lim sup

n→∞

ϕ(n)

n
= 1.

It is known that the totient function can be expressed as a product over the distinct

prime divisors of n (see for instance [4, Th. 2.4]); i.e.,

ϕ(n) = n
∏
p|n

(
1− 1

p

)
. (3.6)

Furthermore, Nicolas ([56], [57]) proved that, if the RH is true, then we have for

all k ≥ 2,
Nk

ϕ(Nk) log logNk

> eγ, (3.7)

where Nk =
∏k

j=1 pj and pj is the j-th prime. On the other hand, if the RH is

false, then there are infinitely many k for which (3.7) is true, and infinitely many

k for which (3.7) is false.

Compared to numbersNk which are the smallest integers that maximize n/ϕ(n),

there are integers which play the same role for σ(n)/n and they are called super-

abundant numbers. In other words, n is a superabundant number if ([3], see also

[60])
σ(n)

n
>
σ(m)

m
for all m < n. (3.8)

Briggs [7] describes a computational study of the successive maxima of the relative

sum-of-divisors function σ(n)/n. He also studies computationally the density of

these numbers. Wójtowicz [79] showed that the values of f are close to 0 on a set

of asymptotic density 1. Another study on Robin’s inequality (3.2) can be found

in [13] in which Choie et al. showed that RH holds true if and only if every natural

number divisible by a fifth power greater than 1 satisfies Robin’s inequality.

In 2009, Akbary and Friggstad [2] established the following interesting theorem

which enables to limit our attention to a narrow sequence of positive integers to

find a probable counterexample to (3.2).

Theorem 3.3 ([2], Th. 3). If there is any counterexample to Robin’s inequality,

then the least such counterexample is a superabundant number.
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Unfortunately, to our knowledge, there is no known algorithm to produce su-

perabundant numbers. On the other hand, if Q(x) denotes the number of super-

abundants not exceeding x, then (see [3])

Q(x) > c
log x log log x

(log log log x)2
,

and in [26] it was even proved that for every δ < 5/48

Q(x) > (log x)1+δ, (x > x0).

As a natural question in this direction, it is interesting to determine the least

number, if exists, that violates inequality (3.2) which belongs to a thinner sequence

of positive integers, and study its properties. Following this demand, we introduce

a new sequence of numbers and call its elements extremely abundant numbers. We

will present in the sequel some of their properties. Surprisingly enough, we will

prove that the least number, if any, should be an extremely abundant number.

Therefore, we will establish another criterion, which is equivalent to the RH.

Before starting the definition and results we mention a recent paper by Caveney

et al. [10]. They defined a positive integer n as an extraordinary number, if n is

composite and f(n) ≥ f(kn) for all

k ∈ N ∪ {1/p : p is a prime factor of n}.

Under these conditions, they showed that the smallest extraordinary number is

n = 4. Then they proved that the RH is true, if and only if, 4 is the only

extraordinary number. For more properties of these numbers and comparison

with superabundant and colossally abundant numbers we refer to [11].

3.2 Extremely Abundant Numbers: Definition

and Motivations

In this section we define a new subsequence of superabundant numbers which

will be contributed to the RH. Namely, our contribution and motivation of this

definition will be to give Theorems 3.6 and 3.7 below.

Definition 3.4. A positive integer n is an extremely abundant number, if either

n = 10080 or n > 10080 and

∀m s.t. 10080 ≤ m < n, f(m) < f(n). (3.9)

where f(n) is given by (3.3).
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Here 10080 has been chosen as the smallest superabundant number greater

than 5040. In Table 3.1 we list the first 20 extremely abundant numbers. To find

them we used the list of superabundant numbers provided in [58] or [49].

We call a positive integer n (cf. [3] and [60])

(i) colossally abundant, if for some ε > 0,

σ(n)

n1+ε
>
σ(m)

m1+ε
, (m < n) and

σ(n)

n1+ε
≥ σ(m)

m1+ε
, (m > n); (3.10)

(ii) highly composite, if d(n) > d(m) for all m < n, where d(n) =
∑

d|n 1 is the

number of divisors of n;

(iii) generalized superior highly composite, if there is a positive number ε such

that

σ−s(n)

nε
≥ σ−s(m)

mε
, (m < n) and

σ−s(n)

nε
>
σ−s(m)

mε
, (m > n),

where σ−s(n) =
∑

d|n d
−s.

It was Ramanujan who initiated the study of these classes of numbers in an un-

published part of his 1915 work on highly composite numbers ([59], [60], [61]).

More precisely, he defined rather general classes of these numbers. For instance,

he defined generalized highly composite numbers, containing as a subset super-

abundant numbers ([59], §59), and he introduced the generalized superior highly

composite numbers, including as a particular case colossally abundant numbers.

For more details about these numbers see [3], [26] and [60].

We denote the following sets of integers by

SA = {n : n is superabundant},

CA = {n : n is colossally abundant},

XA = {n : n is extremely abundant}.

We also use SA, CA and XA as abbreviations of the corresponding sets. Clearly,

XA 6= CA (see Table 3.1). Indeed, we shall prove that infinitely many numbers

of CA are not in XA and that, if RH holds, then infinitely many numbers of XA

are in CA.

As an elementary result from the definition of XA numbers we get

Proposition 3.5. The inclusion XA ⊂ SA holds.
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Proof. First, 10080 ∈ SA. Further, if n > 10080 and n ∈ XA, then for 10080 ≤
m < n we have

σ(n)

n
= f(n) log log n > f(m) log logm =

σ(m)

m
.

In particular, for m = 10080, we get

σ(n)

n
>
σ(10080)

10080
.

So that, for m < 10080, we have

σ(n)

n
>
σ(10080)

10080
>
σ(m)

m
,

since 10080 ∈ SA. Therefore, n belongs to SA.

Next, motivating our construction of XA numbers, we will establish the first

interesting result of the chapter.

Theorem 3.6. If there is any counterexample to Robin’s inequality (3.2), then the

least one is an XA number.

Proof. By doing some computer calculations we observe that there is no coun-

terexample to Robin’s inequality (3.2) for 5040 < n ≤ 10080. Now let n > 10080

be the least counterexample to inequality (3.2). For m satisfying 10080 ≤ m < n

we have

f(m) < eγ ≤ f(n).

Therefore, n is an XA.

As we mentioned in Introduction, we will prove an equivalent criterion to the

RH whose proof is based on Robin’s inequality (3.2) and Theorem 3.2. Let #A

denote the cardinal number of a set A. This result has its own interest which will

be discussed in §3.5.

Theorem 3.7. The RH is true if and only if #XA =∞.

Proof. Sufficiency. Assume that RH is not true. Then from Theorem 3.6, f(m) ≥
eγ for some m ≥ 10080. From Theorem 3.2, M = supn≥10080 f(n) is finite and

hence there exists n0 such that f(n0) = M ≥ eγ (if M = eγ then set n0 = m).

An integer n > n0 satisfies f(n) ≤ M = f(n0) and n can not be in XA so that

#XA ≤ n0.
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Necessity. On the other hand, if RH is true, then inequality (3.2) is true. If

#XA is finite, then there exists an m such that for every n > m, f(n) ≤ f(m).

Then

lim sup
n→∞

f(n) ≤ f(m) < eγ,

which is a contradiction to Theorem 3.2.

There are some primes which cannot be the largest prime factors of any XA

number. For example, referring to Table 3.1, suggests that there is no XA number

with the largest prime factor p(n) = 149 (one can prove this using Proposition

3.14). Do there exist infinitely many such primes?

3.3 Auxiliary Lemmas

Before we state several properties of SA, CA and XA numbers, we give the following

lemmas which will be needed in the sequel. We note that inequality (1.12) or by

changing variable x = 1/t

t

1 + t
< log(1 + t) < t, (t > 0), (3.11)

will be employed frequently.

Lemma 3.8. Let a, b be positive constants and x, y ∈ R+ for which

log x > a,

and

x

(
1− a

log x

)
< y < x

(
1 +

b

log x

)
.

Then

y

(
1− c

log y

)
< x < y

(
1 +

d

log y

)
,

where

c ≥ b

(
1−

b− b
log x

log x+ b

)
, d ≥ a

(
1 +

a+ b
log x

log x− a

)
.

Proof. Dividing by x, inverting both sides and multiplying by y, we get

y

1 + b/ log x
< x <

y

1− a/ log x
.

We are looking for constants c and d such that

1− c

log y
<

1

1 + b/ log x
,
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or equivalently

c > (log y)
b

log x+ b
,

and
1

1− a/ log x
< 1 +

d

log y
,

or equivalently

d > (log y)
a

log x− a
.

First we determine c. Since

y < x

(
1 +

b

log x

)
,

then

log y < log x+ log

(
1 +

b

log x

)
< log x+

b

log x
.

So that if

c >

(
log x+

b

log x

)
b

log x+ b

=b

(
log x+ b− b+

b

log x

)
1

log x+ b

=b

(
1−

b− b
log x

log x+ b

)
,

then

c > log y
b

log x+ b
,

and hence

x > y

(
1− c

log y

)
.

Similarly, if

d >

(
log x+

b

log x

)
a

log x− a

=

(
log x− a+ a+

b

log x

)
a

log x− a

=a

(
1 +

a+ b
log x

log x− a

)
,

then

d > log y
a

log x− a
,

and therefore

x < y

(
1 +

d

log y

)
.
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Similarly one can show

Lemma 3.9. Let a, b be positive constants and x, y ∈ R+ for which

log2 x > a,

and

x

(
1− a

log2 x

)
< y < x

(
1 +

b

log2 x

)
,

Then

y

(
1− c

log2 y

)
< x < y

(
1 +

d

log2 y

)
,

where

c ≥ b

(
1−

b− 2b
log x
− b2

log4 x

log2 x+ b

)
, d ≥ a

(
1 +

a+ 2b
log x

+ b2

log4 x

log2 x− a

)
.

By elementary differential calculus one proves also

Lemma 3.10. Let h(x) = log log x. Then

g(y) =
yh(y)− xh(x)

(y − x)h(x)
, (y > x > e).

is increasing. In particular, if c > 1 and e < x < y < c x, we have g(y) < g(c x).

We will need in the sequel the following inequality

1

c− 1

(
c
log log cx

log log x
− 1

)
< 1 +

c

c− 1

log c

log x log log x
, (x > e, c > 1). (3.12)

Indeed

1

c− 1

(
c
log log cx

log log x
− 1

)
=

1

c− 1

(
c
log log cx− log log x

log log x
+ c− 1

)
=

1

c− 1

(
c

log log x
log

(
1 +

log c

log x

)
+ c− 1

)
<

1

c− 1

(
c

log log x

(
log c

log x

)
+ c− 1

)
=1 +

c

c− 1

log c

log x log log x
.

Lemma 3.11. Let x ≥ 11. Then, for y > x the following inequality holds

log log y

log log x
<

√
y
√
x
.
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Recall that the prime number theorem is equivalent to

ψ(x) ∼ x, (3.13)

where ψ(x) is Chebyshev’s function (Theorem 2.2; see also [36], Th. 434; [44], Th.

3, 12). The following result is a corollary of 2.1 which we will use in the sequel.

Of course we could use the explicit bounds which we got in the previous chapter,

but for historical point of view (due to Chebyshev) we use the following corollary

in one of our results.

Corollary 3.12. We have

ϑ(x) >
log 2

2
x, (x ≥ 3).

Proof. First we prove that the right-hand side of (2.2) is greater than log 2
2
x in

[x0,∞) for some x0. Let

g(x) = A0x−
12

5
A0x

1
2 − 5

8 log 6
log2 x− 15

4
log x− 3− log 2

2
x,

where A0 is defined in (2.1). Then

g′(x) = (A0 −
log 2

2
)− 6

5
A0x

− 1
2 − 5

4 log 6

log x

x
− 15

4x
.

As log x < 3
4
x

1
2 and x

1
2 < x for x > 1,

g′(x) > (A0 −
log 2

2
)−

(
6

5
A0 +

15

16 log 6
+

15

4

)
x−

1
2 .

So, for

x > x0 =

(
6

5
A0 +

15

16 log 6
+

15

4

)2

/(A0 −
log 2

2
)2 ≈ 87.591

we have g′(x) > 0; i.e., g(x) is increasing. Also g(x0) > 0 and therefore g(x) > 0,

for x ≥ x0. Now for 3 ≤ x < x0, verify ϑ(x) > log 2
2
x using direct computation.

3.4 Some Properties of SA, CA and XA Num-

bers

This section is divided into three subsections, for which we will exhibit several

properties of SA, CA and XA numbers, respectively. In the following, when there

is no ambiguity, we simply denote by p the largest prime factor of n.
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3.4.1 SA Numbers

As the starting point, we show that for any real positive x ≥ 1, there is at least

one SA number in the interval [x, 2x). In other words

Proposition 3.13. Let n < n′ be two consecutive SA numbers. Then

n′

n
≤ 2.

Proof. Let n =
∏p

q=2 q
kq . We compare n with 2n. In fact

σ(2n)/(2n)

σ(n)/n
=

2k2+2 − 1

2k2+2 − 2
> 1.

Hence, n′ ≤ 2n.

Alaoglu and Erdős [3] proved that If n = 2k2 · · · pkp is a superabundant number

then k2 ≥ . . . ≥ kp and the exponent of greatest prime factor of n is 1 except

n = 4, 36.

Proposition 3.14 ([3], Th. 2). Let q and r be prime factors of n ∈ SA such that

q < r and

β :=

⌊
kq log q

log r

⌋
,

where kq is the exponent of q. Then kr (the exponent of r) has one of the three

values : β − 1, β + 1, β.

As we observe, the above proposition determines the exponent of each prime

factor of a SA number with error of at most 1 in terms of smaller prime factor

of that number. In the next theorem we give a lower bound for the exponent kq

related to the largest prime factor of n.

Theorem 3.15. Let n ∈ SA and 2 ≤ q ≤ p (where p is the greatest prime factor

of n) be a prime factor of n. Then⌊
log p

log q

⌋
≤ kq.

Proof. If q = p, it is trivial. Let q < p and kq = k and suppose that k ≤
[log p/ log q]− 1. Hence

qk+1 < p. (3.14)
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Now we compare values of σ(s)/s, taking s = n and s = m = nqk+1/p. Since

σ(s)/s is multiplicative, we restrict our attention to the factors q and p. But n is

SA and m < n, then

1 <
σ(n)/n

σ(m)/m
=
q2k+2 − qk+1

q2k+2 − 1

(
1 +

1

p

)
=

1

1 + 1/qk+1

(
1 +

1

p

)
.

Consequently, p < qk+1, which contradicts (3.14).

The following proposition gives the asymptotic relation between prime factors

of SA numbers.

Proposition 3.16 ([3], p. 453). Let δ denote

δ =
(log log p)2

log p log q
, (q1−θ < log p),

δ =
log p

q1−θ log q
, (q1−θ > log p),

where θ ≥ 5/8 is the number which was discussed just before Lemma 2.9. Then

log
qk+1 − 1

qk+1 − q
>

log q

log p
log

(
1 +

1

p

)
{1 +O(δ)} , (3.15)

log
qk+2 − 1

qk+2 − q
<

log q

log p
log

(
1 +

1

p

)
{1 +O(δ)} . (3.16)

Corollary 3.17. Let n ∈ SA and 2 ≤ q ≤ p (where p is the greatest prime factor

of n) be a fixed prime factor of n. Then there exist two positive constants c and c′

(depending on q) such that

c p
log p

log q
< qkq < c′ p

log p

log q
.

Proof. By inequality (3.11)

log
qk+1 − 1

qk+1 − q
= log

(
1 +

q − 1

qk+1 − q

)
<

q − 1

qk+1 − q
≤ 1

qk

and (3.15), there exists a c ′ > 0 such that

qk < c ′
p log p

log q
.

On the other hand, again from inequality (3.11)

log
qk+2 − 1

qk+2 − q
= log

(
1 +

q − 1

qk+2 − q

)
>

q − 1

qk+2 − 1
>

1

2qk+1

and (3.16), there exists a c > 0 such that

qk > c
p log p

log q
.
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Corollary 3.18. For large enough SA number n = 2k · · · p

p < 2k−1. (3.17)

Corollary 3.19. Let n = 2k · · · p be a SA number. Then for large enough n⌊
k log 2

log p

⌋
= 1.

Proof. By Corollary 3.17 for q = 2 we have

log(c p
log p

log 2
) < k log 2 < log(c′ p

log p

log 2
).

Hence, for large enough p

1 < 1 +
log(cp log p/ log 2)

log p
<
k log 2

log p
< 1 +

log(c′p log p/ log 2)

log p
< 2.

Therefore, ⌊
k log 2

log p

⌋
= 1.

Remark 3.20. In [3] it was proved that qkq < 2k2+2 and, in p. 455 it was remarked

that for large SA n, qkq < 2k2 for q > 11.

Proposition 3.21 ([3], Th. 7). If n = 2k · · · p ∈ SA , then

p ∼ log n.

From Corollary 3.17 and Proposition 3.21 it follows that

Proposition 3.22. For large enough n ∈ SA

log n < 2k2 .

Proof. We use Remark 3.20, Theorem 2.10 and Corollary 3.18 to get

log n

2k2
=

∑
log qkq

2k2

<
5 log 2k2+2 + (π(p(n))− 5) log 2k2)

2k2

= π(p(n))
log 2k2

2k2
+

10 log 2

2k2

<
p(n)

log p(n)

(
1 +

1.2762

log p(n)

)
log 2k2

2k2
+

10 log 2

2k2

=
p(n)

2k2
log 2k2

log p(n)

(
1 +

1.2762

log p(n)

)
+

10 log 2

2k2

< 1,

where p(n) = p is the greatest prime factor of n.
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Proposition 3.23. Let n = 2k2 · · · qkq · · · p ∈ SA. Then

ψ(p) ≤ log n. (3.18)

Moreover,

lim
n→∞

ψ(p)

log n
= 1. (3.19)

Proof. In fact, by Theorem 3.15

ψ(p) =
∑
q≤p

⌊
log p

log q

⌋
log q ≤

∑
q≤p

kq log q = log n.

In order to prove (3.19) we appeal to (3.13) and Proposition 3.21.

Proposition 3.24 ([3], Lemma 4). If q is the greatest prime of exponent k, and if

q1−θ > log p (where θ ≥ 5/8), then all primes between q and q + qθ have exponent

k − 1.

Remark 3.25. From the above proposition we observe that there is some n0 such

that for any superabundant number n > n0 there exists a prime factor of n with

exponent 2 and there exists a prime factor of n with exponent 3.

Proposition 3.26 ([3], Th. 4). If q is either the greatest prime of exponent k or

the least prime of exponent k − 1, and if q1−θ > log p, then

qk =
p log p

log q

{
1 +O

(
log p

q1−θ log q

)}
.

From Remark 3.25 and Proposition 3.26 we get

Corollary 3.27. Let xk (with k = 2, 3) denote the greatest prime factor of ex-

ponent k or the least prime of exponent k − 1 in decomposition of n ∈ SA and

x1−θ
k > log p. Then for large enough n ∈ SA√

3

2
p < x2 <

3

2

√
p,

and
3

√
5

2
p < x3 <

3

2
3
√
p,

where p is the greatest prime factor of n.

Lemma 3.28. For large enough n = 2k2 · · · qkq · · · p ∈ SA

log n

ϑ(p)
< 1 +

3

2
√
p

(
1 +

4η1

log p

)
,

where η1 is defined in (2.8) or (2.21).
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Proof. Let x2 be the largest prime factor with exponent 2. From Corollary 3.27

for large enough n ∈ SA

log n

ϑ(p)
− 1 =

1

ϑ(p)

{ ∑
2≤q≤x3

(kq − 1) log q + ϑ(x2)− ϑ(x3)

}

<
1

ϑ(p)
{ϑ(x2) + (k2 − 2)ϑ(x3)}

<
1

ϑ(p)

{
ϑ(

3

2

√
p) +

(
log 2p log p

log 2
− 2

)
ϑ(

3

2
3
√
p)

}
<

1

p(1− η1/ log p)

3
√
p

2

{
1 +

η1

log 3
2

√
p

+
log p log p

2

log 2
·

3
√
p
√
p

(
1 +

η1

log 3
2

3
√
p

)}

<
3

2
√
p

(
1 +

4η1

log p

)
, p > p0 for some p0

where η1 is that in Theorem 2.8.

In Proposition 3.21 it was proved that the log n is asymptotic to p(n). In the

next proposition we give better bounds for this approximation.

Proposition 3.29. For n = 2k · · · p ∈ SA we have

log n > p

(
1− η1

log p

)
and for large enough n ∈ SA

log n < p

(
1 +

2η1

log p

)
, (3.20)

where η1 is defined in (2.8) or (2.21).

Proof. The first inequality holds by (3.18) and Theorem 2.8 or Proposition 2.21

(for p > 8 · 1011). Concerning the second inequality, we find

log n

p
=

log n

ϑ(p)

ϑ(p)

p

<

{
1 +

3

2
√
p

(
1 +

4η1

log p

)}(
1 +

η1

log p

)
<

(
1 +

2η1

log p

)
, (p > p0 for some p0).

From Lemma 3.9 and Proposition 3.29, we conclude
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Corollary 3.30. For large enough n = 2k · · · p ∈ SA, we have

log n

(
1− 2η1

log log n

)
< p < log n

(
1 +

2η1

log log n

)
,

where η1 is defined in (2.8) or (2.21).

As we mentioned in the Introduction, two functions σ(n)/n and n/φ(n) are

close functions (see (3.1) and (3.6)). Here we will show how close they are for SA

numbers. In §18.3 and §18.4 of [36], it is proved that

6

π2
<
σ(n)ϕ(n)

n2
< 1,

and

lim
n→∞

σ(n)ϕ(n)

n2
=

6

π2
, lim

n→∞

σ(n)ϕ(n)

n2
= 1.

Proposition 3.31. For n = 2k2 · · · qkq · · · p ∈ SA, we have

σ(n)

n
> {1− ε(p)} n

ϕ(n)
,

where

ε(p) =
6

√
p log p

(
1 +

1

log p

)
.

Proof. We show that

σ(n)

n
· ϕ(n)

n
=
∏
q≤p

(
1− 1

qkq+1

)
> 1− 6

√
p log p

(
1 +

1

log p

)
. (3.21)

Hence, using logarithmic inequality (1.12) and Theorem 3.15 and Theorem 2.10,

we obtain

log
∏
q≤p

(
1− 1

qkq+1

)
=
∑
q≤p

log

(
1− 1

qkq+1

)
> −

∑
q≤p

1

qkq+1 − 1

= −
∑
q≤x2

1

qkq+1 − 1
−
∑

x2<q≤p

1

q2 − 1

> −
∑
q≤x2

1

qlog p/ log q − 1
− 2

√
2

√
p log p

= −
∑
q≤x2

1

p− 1
− 2

√
2

√
p log p

= −π(x2)

p− 1
− 2

√
2

√
p log p

> − 1

p− 1

3
√
p

2 log(3/2)
√
p

(
1 +

1.2762

log(3/2)
√
p

)
− 2

√
2

√
p log p

> − 6
√
p log p

(
1 +

1

log p

)
,
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where x2 is the greatest prime factor of exponent 2. Therefore, taking the expo-

nential of both sides and using e−x > 1− x, we get (3.21).

Proposition 3.32. Let n = 2k · · · p ∈ SA. Then

lim
n→∞

σ(n)

n log log n
= eγ.

More precisely,

σ(n)

n log log n
< eγ

(
1 +

0.363945701

(log log n)2

)
, (n ≥ 3)

and for large enough n ∈ SA

σ(n)

n log log n
> eγ

(
1− 1

(log log n)2

)
. (3.22)

Proof. The first inequality is exactly (3.5), where 0.363945701 ≈ (0.6482136495)e−γ.

By using Proposition 3.31, Lemma 2.12 and Corollary 3.30, we get for large

enough n

σ(n)

n
> {1− ε(p)} eγ(log p)

(
1− 0.2

log2 p

)
= eγ(log p)

{
1− 6
√
p log p

(
1 +

1

log p

)}(
1− 0.2

log2 p

)
> eγ(log log n)

(
1− 1

(log log n)2

)
.

In [57], it was proved that under RH

ψ(x)− ϑ(x) ≥
√
x, (x ≥ 121)

and

ψ(x)− ϑ(x)−
√
x ≤ 1.3327681611 3

√
x, (x ≥ 1).

The following proposition is an application of Corollary 3.27 and Lemma 3.28.

Proposition 3.33. For large enough n ∈ SA we have

√
p < log n− ϑ(p) <

√
3p
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Proof.

log n− ϑ(p) =
∑
q≤x3

(kq − 1) log q + ϑ(x2)− ϑ(x3)

≥ ϑ(x2) + ϑ(x3)

≥ ϑ(
√

3p/2) + ϑ( 3
√

5p/2)

>

√
3

2
p

(
1− η1

log
√

3p/2

)
+

3

√
5

2
p

(
1− η1

log 3
√

5p/2

)
>
√
p, p > p0 for some p0.

Hence the first inequality holds. The second inequality is a corollary of Lemma

3.28.

Behavior of some functions in SA numbers

In this part we present some results on the behaviors of some special arithmetic

functions when their arguments are SA numbers. Before we start the results we

give a definition.

Definition 3.34. Let g be a real-valued function and A = {an}n∈I (where I is

an ordered subset of natural numbers N by the usual order <) be an increasing

sequence of integers. We say that g is an increasing (decreasing) function on A (or

for an ∈ A), if g(an) ≤ g(an+1) (if g(an) ≥ g(an+1)) for all n ∈ I.

In this part we use an to denote an SA number.

Lemma 3.35. Let

g(n) = σ(n)− n.

Then g is increasing for an ∈ SA.

Proof. Let an, an+1 ∈ SA. By definition of SA numbers (3.8)

σ(an+1)

an+1

>
σ(an)

an
> 1, (n > 1).

Therefore,

σ(an+1)

σ(an)
>
an+1

an
⇒σ(an+1)

σ(an)
− 1 >

an+1

an
− 1

⇒σ(an)

(
σ(an+1)

σ(an)
− 1

)
> an

(
an+1

an
− 1

)
⇒σ(an+1)− an+1 > σ(an)− an.
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Proposition 3.36. Let

g(n) =
σ(n)σ(n)

nn
.

Then g is increasing for an ∈ SA.

Proof. Indeed, definition of SA numbers (3.8) and Lemma 3.35 imply

σ(an+1)σ(an+1)

(an+1)an+1
=

(
σ(an+1)

an+1

)σ(an+1)

(an+1)σ(an+1)−an+1

>

(
σ(an)

an

)σ(an+1)

(an+1)σ(an)−an

>

(
σ(an)

an

)σ(an)

(an)σ(an)−an

=
σ(an)σ(an)

(an)an
.

Now we prove a stronger result.

Theorem 3.37. Let

g(n) = σ(n)− n log log n.

Then g is increasing for large enough n ∈ SA.

Proof. Let n, n′ be two consecutive SA numbers. By Lemma 3.10, Proposition

3.13 and inequality (3.12), with c = 2, x = n, y = n′, we obtain

1

n′/n− 1

(
n′

n

log log n′

log log n
− 1

)
≤ 2

log log(2n)

log log n
− 1

<1 + 2
log 2

log n log log n

<
log log 12

log log 6
, (n ≥ 24).

This gives
n′

n
− 1 >

log log 6

log log 12

(
n′

n

log log n′

log log n
− 1

)
. (3.23)

By definition of SA numbers
σ(n′)

σ(n)
>
n′

n
.
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Hence, via (3.23) we derive

σ(n′)

σ(n)
− 1 >

n′

n
− 1

=
log log 6

log log 12

n′ log log n′

n log log n
− log log 6

log log 12

n′ log log n′

n log log n
+
n′

n
− 1

>
log log 6

log log 12

(
n′ log log n′

n log log n
− 1

)
. (3.24)

On the other hand since log log 12
log log 6

< 1.56077 < eγ, by Proposition 3.32, for large

enough n

σ(n) >
log log 12

log log 6
(n log log n). (3.25)

Multiplying both sides of (3.24) and (3.25), we get

σ(n′)− σ(n) > n′ log log n′ − n log log n.

Therefore,

σ(n′)− n′ log log n′ > σ(n)− n log log n.

Proposition 3.38. Let

g(n) =
σ(n)σ(n)

(n log log n)n log logn
.

Then g is increasing for large enough n ∈ SA.

Proof. By Proposition 3.32 we have for large enough n ∈ SA

σ(n) >
3

2
n log log n. (3.26)

We show that for two consecutive SA n, n′

σ(n′)σ(n′)

(n′ log log n′)n′ log logn′ >
σ(n)σ(n)

(n log log n)n log logn
.

Indeed,

σ(n′)σ(n′)

σ(n)σ(n)

(n log log n)n log logn

(n′ log log n′)n′ log logn′ =

(
σ(n′)

σ(n)

)σ(n′)(
n log log n

n′ log log n′

)n′ log logn′

(3.27)

×
{

σ(n)σ(n′)−σ(n)

(n log log n)n′ log logn′−n log logn

}
.
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By Theorem 3.37, the term inside {} is greater than 1. Moreover,

(
σ(n′)

σ(n)

)σ(n′)(
n log log n

n′ log log n′

)n′ log logn′

>

(
n′

n

)σ(n′)(
n log log n

n′ log log n′

)n′ log logn′

=

(
n′

n

)σ(n′)−n′ log logn′ (
log log n

log log n′

)n′ log logn′

.

However, due to (3.26) the right-hand side of the equality is greater than

(
n′

n

) 1
2
n′ log logn′ (

log log n

log log n′

)n′ log logn′

. (3.28)

Finally appealing to Lemma 3.11 we conclude that (3.28) is greater than 1.

Proposition 3.39. Let A = {an} be a sequence for which any prime factor of an

is a prime factor of an+1, and

g(n) =
n

ϕ(n)
,

Then g is increasing for an ∈ A.

Proof. If p(an+1) = p(an), it is clear. Let p(an+1) ≥ pk+1 > pk = p(an)

an+1/ϕ(an+1)

an/ϕ(an)
≥ 1

1− 1/pk+1

> 1.

Proposition 3.40. Let {an}∞n=1 ⊂ SA be such that p(an+1) ≥ p(an),

g(n) =
σ(n)

ϕ(n)
,

then g is increasing for an ∈ {an}∞n=1 ⊂ SA.

Proof. Using definition of SA number and the previous proposition we have

σ(an+1)

ϕ(an+1)
=
σ(an+1)

ϕ(an+1)
· an+1

an+1

>
σ(an)

an

an
ϕ(an)

=
σ(an)

ϕ(an)
.

Let Ψ(n) denote Dedekind’s arithmetical function of n which is defined by

Ψ(n) = n
∏
p|n

(
1 +

1

p

)
, Ψ(1) = 1,

where the product is taken over all primes p dividing n.
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Proposition 3.41. Let {an}∞n=1 ⊂ SA be such that p(an+1) ≥ p(an),

σ(n)Ψ(n)

nn
.

then g is increasing for an ∈ {an}∞n=1 ⊂ SA.

Proof. Let p(an+1) ≥ p(an). Then

Ψ(an+1)− an+1 > Ψ(an)− an.

So that

σ(an+1)Ψ(an+1)

(an+1)an+1
=

(
σ(an+1)

an+1

)Ψ(an+1)

a
Ψ(an+1)−an+1

n+1 >

(
σ(an)

an

)Ψ(an+1)

a
Ψ(an+1)−an+1

n+1

>

(
σ(an)

an

)Ψ(an)

a
Ψ(an+1)−an+1

n+1 >

(
σ(an)

an

)Ψ(an)

aΨ(an)−an
n

=
σ(an)Ψ(an)

(an)an
.

3.4.2 CA Numbers

From the definition of CA numbers (3.10) it is easily seen that CA ⊂ SA. Here

we describe the algorithm to produce CA numbers. For more details see [11], [3],

[26], [64]. Let F be defined by

F (x, k) =
log(1 + 1/(x+ · · ·+ xk))

log x
. (3.29)

For ε > 0, we define x1 to be the only number such that

F (x1, 1) = ε,

and xk (where k > 1)to be the only number such that

F (xk, k) = ε.

Let

Ep = {F (p, α) : α ≥ 1},

and

E =
⋃

Ep = {ε1, ε2, . . .}.
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If ε /∈ E, then the function σ(n)/n1+ε attains its maximum at a single point Nε

whose prime decomposition is

Nε =
∏

pαp(ε), αp(ε) =

⌊
log p1+ε−1

pε−1

log p

⌋
− 1 (3.30)

or if prefer

αp(ε) =

{
k, xk+1 < p < xk, k ≥ 1;

0, p > x = x1.

If ε ∈ E, then by theorem of six exponentials at most two xk’s are prime (see [11],

[3], [26], [64]). Hence, there are either two or four CA numbers of parameter ε, is

defined by

Nε =
K∏
k=1

∏
p<xk

or
p≤xk

p. (3.31)

In fact formula (3.31) gives all possible values of a CA number for a parameter ε

in or not in E.

If N is the largest CA number of parameter ε, then

F (p, 1) = ε⇒ p(N) = p, (3.32)

where p(N) is the largest prime factor of N .

It was proved by Robin ([64], Proposition 1) that the maximum order of the

function f defined in (3.3) is attained by CA numbers. Using this fact, one has

Proposition 3.42. Let 3 ≤ N < n < N ′, where N and N ′ are two successive CA

numbers. Then

f(n) < max{f(N), f(N ′)}. (3.33)

Proof. Robin [64, Prop. 1] proved the inequality

f(n) ≤ max{f(N), f(N ′)}.

But, in fact, due to the strict convexity of the function t 7→ εt− log log t, Robin’s

proof naturally extends to the strict inequality (3.33).

This fact shows, that if there is any counterexample to (3.2), then there exists

at list one CA number which violates it.

Corollary 3.43. Let N < N ′ be two consecutive CA numbers. If there exists an

XA number n > 10080 satisfying N < n < N ′, then N ′ is also an XA.
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Proof. Let us set

X = {m ∈ XA : N < m < N ′}.

By the assumption n ∈ XA, then we have X 6= ∅. Let n′ = maxX. Since

n′ ∈ XA and n′ > N then f(n′) > f(N). From inequality (3.33) we must have

f(n′) < f(N ′). Hence N ′ ∈ XA.

Remark 3.44. In the case N < n = 10080 < N ′, we have N = 5040, N ′ = 55440

and

f(N) ≈ 1.790 973 367, f(n) ≈ 1.755 814 339, f(N ′) ≈ 1.751 246 515.

Hence inequality (3.33) is satisfied with f(n) < f(N) = max{f(N), f(N ′)}.

Theorem 3.45. If RH holds, then there exist infinitely many CA numbers that

are also XA.

Proof. If RH holds, then by Theorem 3.7, #XA = ∞. Let n be in XA. Since

#CA =∞ (see [3], [26]), there exist two successive CA numbers N, N ′ such that

N < n ≤ N ′. If N ′ = n then it is readily in XA, otherwise N ′ belongs to XA via

Corollary 3.43.

It will be seen that there exist infinitely many CA numbers N for which the

largest prime factor p is greater than logN . For this purpose, we will use the

following

Lemma 3.46 ([11], Lemma 3). Let N be a CA number of parameter ε < F (2, 1) =

log(3/2)/ log 2 and define x = x(ε) by (3.29). Then

(i) for some constant c > 0

logN ≤ ϑ(x) + c
√
x.

(ii) Moreover, if N is the largest CA number of parameter ε, then

ϑ(x) ≤ logN ≤ ϑ(x) + c
√
x.

The following lemma is a corollary of Littlewood oscillation for Chebyshev’s ϑ

function (Corollary 2.14).
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Lemma 3.47 ([11]). There exists a constant c > 0 such that for infinitely many

primes p we have

ϑ(p) < p− c√p log log log p, (3.34)

and for infinitely many other primes p we have

ϑ(p) > p+ c
√
p log log log p.

These results give

Theorem 3.48. There are infinitely many CA numbers Nε, such that logNε <

p(Nε).

Proof. We choose p large enough as in (3.34) and Nε the largest CA number of

parameter

ε = F (p, 1).

Then, from (3.32), one has p(Nε) = p. By Lemma 3.46(ii)

logNε − ϑ(p) < c
√
p, (for some c > 0).

On the other hand, by Lemma 3.47 there exists a constant c′ > 0 such that

ϑ(p)− p < −c′√p log log log p, (c′ > 0).

Hence

logNε − p < {c− c′ log log log p}√p < 0,

and this is the desired result.

3.4.3 XA Numbers

Returning to XA numbers, here we present some of their properties and describe

the structure of these numbers.

Theorem 3.49. Let n = 2k2 · · · p be an XA number. Then

p < log n.

Proof. For n = 10080 we have

p(10080) = 7 < 9.218 < log(10080).

Let n > 10080 be an XA number and m = n/p. Then m > 10080, since for all

primes p we have ϑ(p) > log 2
2
p > p

3
(this follows from Corollary 3.12). Therefore,
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for a number n ∈ SA we have log n ≥ ϑ(p(n)) > p(n)/3 and m = n/p(n) >

n/(3 log n) > 10080 if n ≥ 400 000. For n < 400 000 we can check by computation.

Hence by Definition 3.4

1 +
1

p
=

σ(n)/n

σ(m)/m
>

log log n

log logm
.

So

1 +
1

p
>

log log n

log logm
⇒ 1

p
>

log(1 + log p/ logm)

log logm
.

Using inequality (1.12) we have

1

p
>

log p

log n log logm
>

log p

log n log log n
⇒ p < log n.

We mention a similar result proved by Choie et al. ([13], Lemma 6.1)

Proposition 3.50. Let t ≥ 2 be fixed. Suppose that there exists a t-free integer

exceeding 5040 that does not satisfy Robin’s inequality. Let n = 2k2 · · · p be the

smallest such integer. Then p < log n.

In the previous section we showed that, if RH holds, then there exist infinitely

many CA numbers that are also XA. Next theorem is a conclusion of Theorems

3.48 and 3.49 which is independent of RH.

Theorem 3.51. There exist infinitely many CA numbers that are not XA.

We know that by Definition 3.4, for n ∈ XA the function σ(n)/n is strictly

increasing and φ(n)/n is decreasing. Next theorem compares the increase and

decrease power by adding these two functions.

Theorem 3.52. Let

g(n) =
σ(n) + ϕ(n)

n
. (3.35)

For two consecutive XA numbers n = 2k · · · p and n′ = 2k
′ · · · p′, if p′ ≥ p and

log(n′/n) > 1/(3 log p′), then g(n) < g(n′) for large enough n, n′ ∈ XA.

Proof. If the largest primes of n and n′ are equal, it is clear. Let p′ = pk+1 > pk = p.

If n > 10080 is XA, then (see (3.3))

f(n) > f(10080) > 1.75.
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Using inequality (1.12), Proposition 3.29, Lemma 2.12 and Lemma 2.9, we deduce

for large enough n

σ(n′)

n′
+
ϕ(n′)

n′
− σ(n)

n
− ϕ(n)

n

>
σ(n)

n

log log n′ − log log n

log log n
− 1

pk+1

k∏
j=1

(
1− 1

pj

)

>1.75 log
log n′

log n
− 1

pk+1

k∏
j=1

(
1− 1

pj

)

>1.75
log(n′/n)

log n′
− 1

pk+1

k∏
j=1

(
1− 1

pj

)
>1.75

log(n′/n)

log n′
− 1

pk+1

e−γ

log pk

(
1 +

0.2

log2 pk

)
>1.75

log(n′/n)

pk+1(1 + 2η1
log pk+1

)
− 1

pk+1

e−γ

log pk

(
1 +

0.2

log2 pk

)

>
1

pk+1

{
1.75

3 log pk+1(1 + 2η1
log pk+1

)
− e−γ

log pk

(
1 +

0.2

log2 pk

)}
>0.

Remark 3.53. We checked that (3.35) (without further assumptions in the theorem)

is increasing up to 8150-th element of XA.

Structure of XA

We can describe the structure of XA numbers (for large enough ones). Next

theorem will determine the exponents of the prime factors of an XA numbers (for

large enough XA) with an error at most 1.

Theorem 3.54. Let n = 2k2 · · · qkq · · · p ∈ XA, and

αq(p) =

⌊
logq

(
1 + (q − 1)

p log p

q log q

)⌋
. (3.36)

Then for large enough n ∈ XA we have |kq − αq(p)| ≤ 1.

Proof. Let kq = k and k − αq(p) ≥ 2. Then

qk ≥ qαq(p)+2 > q

(
1 + (q − 1)

p log p

q log q

)
. (3.37)
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Now compare f(n) with f(m) where m = n/q. Since n ∈ XA we must have

σ(n)/n

σ(m)/m
=
qk+1 − 1

qk+1 − q
>

log log n

log logm
,

or using inequality (1.12)

qk < 1 + (q − 1)
log n log logm

q log q
. (3.38)

From (3.37) and (3.38) we get

log n log logm− qp log p > q log q,

and this is a contradiction with (3.20).

Now assume k − αq(p) ≤ −2. Then

qk+2 − 1

q − 1
≤ p log p

q log q
.

Put m = nq/p. We show that under the assumption k−αq(p) ≤ −2 we have that

f(n) < f(m) or simply

σ(n)/n

σ(m)/m
=

(
1− q − 1

qk+2 − 1

)(
1 +

1

p

)
< 1 +

log p/q

log n log logm
.

It is enough to show that

1

p
− q log q

p log p
<

log p/q

log n log logm
. (3.39)

If the left-hand side of (3.39) is negative, then clearly the inequality holds. Suppose

that the left-hand side is positive. Then by (3.20) we have

log n log logm

p log p
< 1 +

(q − 1) log q

log p− q log q
, (n > n1).

Hence for n > n1

σ(n)/n

σ(m)/m
< 1− q − 1

qk+2 − 1
+

1

p
< 1 +

log p/q

log n log logm
<

log log n

log logm
,

which is a contradiction with the definition of n ∈ XA.

We conclude this subsection by the following interesting conjecture.

Conjecture. Let n = 2k2 · · · qkq · · · p ∈ XA and αq(p) is defined by (3.36). Then

for all n ∈ XA we have |kq − αq(p)| ≤ 1.
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3.5 Delicacy of the RH

We already proved that under the RH the number of XA numbers are infinite.

Here we present an interesting theorem which demonstrates the delicacy of the

RH by showing the infinitude of some superset of XA numbers which is defined

by an inequality which is quite close to that (i.e., (3.9)) in the definition of XA

numbers, independent of RH.

Lemma 3.55. If m ≥ 3, then there exists n > m such that

σ(n)/n

σ(m)/m
> 1 +

log n/m

log n log logm
. (3.40)

Proof. Given m ≥ 3. Then by (3.5)

σ(m)

m
≤
(
eγ +

0.648214

(log logm)2

)
log logm, (3.41)

Since
log logm

log logm′

(
1 +

logm′/m

logm′ log logm

)
< 1

and decreasing for m′ > m and tends to 0 as m′ goes to infinity, then for some

m′ > m we have

log logm

log logm′

(
1 +

logm′/m

logm′ log logm

)(
eγ +

0.648214

(log logm)2

)
= eγ − ε, (3.42)

where ε > 0. Hence by Gronwall’s theorem there is n ≥ m′ such that

σ(n)

n
> (eγ − ε) log log n

=
log logm

log logm′

(
1 +

logm′/m

logm′ log logm

)(
eγ +

0.648214

(log logm)2

)
log log n

≥
(

1 +
log n/m

log n log logm

)
σ(m)

m
,

where the last inequality holds by (3.41) and (3.42).

Definition 3.56. Given n1 = 10080. Let nk+1 to be the first integer greater than

nk such that

σ(nk+1)/nk+1

σ(nk)/nk
> 1 +

log nk+1/nk
log nk+1 log log nk

, (k = 1, 2, . . .).

We define X ′ to be the set of all n1, n2, n3, . . ..
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XA ⊂ X ′ ⊂ S. (3.43)

Now we are going to state the main theorem of this paper which is the second

step towards the delicacy of the RH, i.e.,

Theorem 3.57. The set X ′ has infinite number of elements.

Proof. If the RH is true, then the set X ′ has infinite elements by (3.43). If RH is

not true, then there exists m0 ≥ 10080 such that

σ(m0)/m0

σ(m)/m
>

log logm0

log logm
, for all m ≥ 10080.

By Lemma 3.44 there exists m′ > m0 such that m′ satisfies the inequality

σ(m′)/m′

σ(m0)/m0

> 1 +
logm′/m0

logm′ log logm0

.

Let n be the first number greater than m0 which satisfies

σ(n)/n

σ(m0)/m0

> 1 +
log n/m0

log n log logm0

.

Then n ∈ X ′.

Lemma 3.58. If m ≥ 3, then there exists n > m such that

σ(n)/n

σ(m)/m
> 1 +

2 log n/m

(logm+ log n) log logm
. (3.44)

Proof. The proof is similar to that of Lemma 3.55.

Definition 3.59. Given n1 = 10080. Let nk+1 to be the first integer greater than

nk such that

σ(nk+1)/nk+1

σ(nk)/nk
> 1 +

2 log nk+1/nk
(log nk + log nk+1) log log nk

, (k = 1, 2, . . .).

We define X ′′ to be the set of all n1, n2, n3, . . ..

It is easily seen that XA ⊂ X ′′ ⊂ X ′. In a similar method of the proof of

Theorem 3.57 one can prove that

Theorem 3.60. The set X ′′ has infinite number of elements.
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Note that

#XA = 9240, #X ′′ = 9279, #X ′ = 9535.

up to the 300 000th element of S (we used the list of SA numbers tabulated in [58])

and

#(X ′′ −XA) = 39, #(X ′ −XA) = 295.

We list here the elements of X ′′\XA up to s300 000:

X ′′\XA ={s55, s62, s91, s106, s116, s127, s128, s137, s138, s149, s181, s196, s212, s219,

s224, s231, s232, s246, s247, s259, s260, s263, s272, s273, s276, s288, s294,

s299, s305, s311, s317, s330, s340, s341, s343, s354, s65343, s271143, s271151}

We conclude this section by formulating another criterion for the RH (using

Robin’s theorem) with Chebyshev’s ψ function.

Proposition 3.61. The RH is true if and only if

σ(lcm(n))

lcm(n)
< eγ logψ(n), (n ≥ 11) (3.45)

where lcm(n) = lcm(1, 2, . . . , n) is the least common multiples of the first n positive

integers.

Proof. If the RH is true, then by Robin’s theorem inequality (3.45) holds. On the

other hand, if the RH is not true, then according to Proposition 2.15 and noting

that
σ(lcm(n))

lcm(n)
>

∏
1
2

√
n<p≤n(1− 1/p2)∏
p≤n(1− 1/p)

, (n ≥ 121).

inequality (3.45) does not hold.

3.6 Numerical Experiments

In this section we give some numerical results mainly for the set of XA numbers

up to its 13770-th element, which is less than C1 = s500 000 (i.e., 500 000-th SA

number) basing on the list provided by T. D. Noe [58]. We examined Property

3.62 to 3.65 and Remark 3.66 below for the corresponding XA numbers extracted

from the list.

Property 3.62. Let n = 2k2 · · · qkq · · · rkr · · · p be an XA number, where 2 ≤ q <

r ≤ p. Then for 10080 < n ≤ C1
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(i) log n < qkq+1,

(ii) rkr < qkq+1 < rkr+2,

(iii) qkq < kqp,

(iv) qkq log q < log n log log n < qkq+2.

Property 3.63. Let n = 2k2 · · ·xkk. · · · p be an XA number. Then

√
p < x2 <

√
2p, for 10080 < n ≤ C1.

Property 3.64. Let n = 2α2 · · · qαq · · · p and n′ = 2β2 · · · qβq · · · p′ be two consecu-

tive XA numbers greater than 10080. Then for 10080 < n ≤ C1

αq − βq ∈ {−1, 0, 1}, for all 2 ≤ q ≤ p′.

Property 3.65. If m,n are XA and m < n, then for 10080 < n ≤ C1

(i) p(m) ≤ p(n),

(ii) d(m) ≤ d(n).

Remark 3.66. We note that Property 3.65 is not true for SA numbers. For example

s47 = (19])(3])22, s48 = (17])(5])(3])23, p(s48) = 17 < 19 = p(s47).

and

s173 = (59])(7])(5])(3])223, s174 = (61])(7])(3])222,
d(s173)

d(s174)
=

36

35
> 1,

where sk denotes k-th SA number.

Using Table of SA and CA numbers in [58] we have

#{n ∈ XA : n < C} = 24 875,

#{n ∈ CA : n < C} = 21 187,

#{n ∈ CA ∩XA : n < C} = 20 468,

#{n ∈ CA \XA : n < C} = 719,

#{n ∈ XA \ CA : n < C} = 4407,

where C = s1000,000.

The following properties have been checked up to C2 (250,000-th element of

SA numbers) and for 8150-th element of XA numbers in this domain.
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n Type f(n) p(n) log n k2

1 (7])(3])23 = 10080 SA 1.75581 7 9.21831 5

2 (113])(13])(5])(3])223 CA 1.75718 113 126.444 8

3 (127])(13])(5])(3])223 CA 1.75737 127 131.288 8

4 (131])(13])(5])(3])223 CA 1.75764 131 136.163 8

5 (137])(13])(5])(3])223 CA 1.75778 137 141.083 8

6 (139])(13])(5])(3])223 CA 1.75821 139 146.018 8

7 (139])(13])(5])(3])224 CA 1.75826 139 146.711 9

8 (151])(13])(5])(3])223 SA 1.75831 151 156.039 8

9 (151])(13])(5])(3])224 CA 1.75849 151 156.732 9

10 (151])(13])(7])(3])224 CA 1.75860 151 158.678 9

11 (157])(13])(5])(3])224 SA 1.75864 157 161.788 9

12 (157])(13])(7])(3])223 SA 1.75866 157 163.041 8

13 (157])(13])(7])(3])224 CA 1.75892 157 163.734 9

14 (163])(13])(7])(3])224 CA 1.75914 163 168.828 9

15 (163])(17])(7])(3])224 SA 1.75918 163 171.661 9

16 (167])(13])(7])(3])224 CA 1.75943 167 173.946 9

17 (167])(17])(7])(3])224 CA 1.75966 167 176.779 9

18 (173])(17])(7])(3])224 CA 1.76006 173 181.933 9

19 (179])(17])(7])(3])224 CA 1.76038 179 187.120 9

20 (181])(17])(7])(3])224 CA 1.76089 181 192.318 9

Table 3.1: First 10 extremely abundant numbers (pk] =
∏k

j=1 pj is primorial of p)

Property 3.67. If n, n′ ∈ SA are consecutive, then

σ(n′)/n′

σ(n)/n
< 1 +

1

p ′
, (n′ < C2).

Property 3.68. If n, n′ ∈ XA are consecutive, then

n′

n
> 1 + c

(log log n)2

log n
, (0 < c ≤ 4, n′ < C2),

n′

n
> 1 + c

(log log n)2

√
log n

, (0 < c ≤ 0.195, n′ < C2).
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Property 3.69. If n, n′ ∈ XA are consecutive, then

f(n′)

f(n)
< 1 +

1

p ′
, (n′ < C2).

The number of distinct prime factors of a number n is denoted by ω(n) ([69]).

From Property 3.68 we easily can get

g(n) =
n

ω(n)

is increasing for n ∈ XA, where n < C2.

Some of the following functions are mentioned in [69].

Property 3.70. The composition

σ

(
n

⌊
σ(n)

n

⌋)
is increasing for n ∈ SA, n < C2.

Property 3.71. Let g be

(1)
σ(n)ϕ(n)

nn
(2)

Ψ(n)ϕ(n)

nn
.

Then, g is decreasing for n ∈ SA, n < C2.

Property 3.72. Let g be

(1)
Ψ(n)σ(n)

nn
(2)

ϕ(n)σ(n)

nn
, (an > a3)

(3)
ϕ(n)Ψ(n)

nn
, (an > a3, p(an+1) ≥ p(an)).

Then, g is increasing for n ∈ SA, n < C2.

Property 3.73. Let g be each of the following arithmetic functions:

(1)
ϕ(n)

ϕ(ϕ(n))
(2)

n

ϕ(ϕ(n))

(3) d(n)ω(n) (4) ω(ϕ(n)).

Then g is increasing for n ∈ XA, n < C2.

Property 3.74. The compositions

(1) ϕ

(
n

⌊
σ(n)

n

⌋)
(2) ϕ

(
n

⌊
n

ϕ(n)

⌋)
(3) ϕ

(
n

⌊
Ψ(n)

n

⌋)
are increasing for n ∈ XA, n < C2.

Property 3.75. Let g(m) = lcm(1, 2, . . . ,m). Let n = 2k2 · · · p ∈ SA, then

f(n) > f(g(p)), (s49 < n < C2).
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Conclusion and Future Work

During this thesis we tried to work on a number theoretic problem equivalent to

the Riemann hypothesis, i.e. Robin’s criterion. Some of questions which may be

answered are as follows:

• If the Riemann hypothesis is true, then

∂

∂σ
|ζ(s)|2 < 0, for (0 < σ <

1

2
, |t| > 6.5).

• Let n = 2α2 · · · qαq · · · p and n′ = 2β2 · · · qβq · · · p′ be two consecutive ex-

tremely abundant numbers greater than 10080. Then for 10080 < n

αq − βq ∈ {−1, 0, 1}, for all 2 ≤ q ≤ p′.

• If the Riemann hypothesis is true, then the previous statement is true.

• If m,n are extremely abundant and m < n, then for 10080 < n

(i) p(m) ≤ p(n),

(ii) d(m) ≤ d(n).

• If n, n′ ∈ SA are consecutive, then

σ(n′)/n′

σ(n)/n
< 1 +

1

p ′
.

• If n, n′ ∈ XA are consecutive, then

f(n′)

f(n)
< 1 +

1

p ′
.

• The first integer which violates the Robin’s inequality belongs to XA∩CA.

• What is the relation between ϑ(xr) and ϑ(x)r, where r ∈ R+?
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Tables of Estimation for

Chebyshev’s Function

In Theorem 2.20 we take

D = 2500

For b = log(8 ·1011) ≈ 27.4079, we have m = 1, δ = 9 ·10−6 and ε∗0 = 2.84888 ·10−5.

For b = log 1016 ≈ 36.8414, we have m = 2, δ = 5.24 · 10−8 and ε∗0 = 4.66629 ·
10−7.

In this case for b ≥ 5213,

ε∗0 < Ω∗1e
−b/2 + Ω∗3 +mδ/2 + log(2π)e−b

The values in the Tables 3.3, 3.4, 3.5 are computed

|ψ(x)− x| < ηk
x

logk x
, (eb1 ≤ x ≤ x2 = eb2),

where

ηk = ε∗0 logk x2, (eb1 ≤ x ≤ x2 = eb2).
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Table 3.2: |ψ(x)− x| < xε∗0, (x ≥ eb), for Theorem 2.20

b m δ ε b m δ ε

18.42 1 4.78(-4) 1.14790(-3) 900 22 2.08(-12) 2.39881(-11)

18.43 1 4.76(-4) 1.14336(-3) 950 21 2.15(-12) 2.36469(-11)

18.44 1 4.74(-4) 1.13884(-3) 1000 21 2.12(-12) 2.33114(-11)

18.45 1 4.71(-4) 1.13434(-3) 1050 21 2.09(-12) 2.29819(-11)

18.5 1 4.61(-4) 1.11208(-3) 1100 20 2.16(-12) 2.26511(-11)

18.7 1 4.22(-4) 1.02723(-3) 1150 20 2.13(-12) 2.23185(-11)

19.0 1 3.70(-4) 9.11615(-4) 1200 20 2.09(-12) 2.19902(-11)

19.5 1 2.96(-4) 7.46453(-4) 1250 19 2.17(-12) 2.16664(-11)

20 1 2.37(-4) 6.10561(-4) 1300 19 2.13(-12) 2.13331(-11)

21 1 1.52(-4) 4.07253(-4) 1350 19 2.10(-12) 2.10050(-11)

22 1 9.68(-5) 2.70618(-4) 1400 19 2.07(-12) 2.06828(-11)

23 1 6.17(-5) 1.79207(-4) 1450 18 2.14(-12) 2.03552(-11)

24 1 3.93(-5) 1.18314(-4) 1500 18 2.11(-12) 2.00268(-11)

25 1 2.51(-5) 7.79224(-5) 1550 18 2.07(-12) 1.97045(-11)

26 1 1.61(-5) 5.12515(-5) 1600 17 2.15(-12) 1.93836(-11)

27 1 1.06(-5) 3.37385(-5) 1650 17 2.12(-12) 1.90541(-11)

28 1 7.22(-6) 2.23274(-5) 1700 17 2.08(-12) 1.87301(-11)

29 1 5.26(-6) 1.49727(-5) 1750 17 2.05(-12) 1.84126(-11)

30 2 1.26(-6) 9.41428(-6) 1800 16 2.13(-12) 1.80866(-11)

35 2 1.22(-7) 1.05471(-6) 1850 16 2.09(-12) 1.77616(-11)

40 3 7.81(-9) 1.16290(-7) 1900 16 2.05(-12) 1.74427(-11)

45 4 5.60(-10) 1.23408(-8) 1950 15 2.14(-12) 1.71251(-11)

50 7 3.45(-11) 1.30541(-9) 2000 15 2.10(-12) 1.67987(-11)

75 26 2.20(-12) 3.32667(-11) 2100 15 2.02(-12) 1.61646(-11)

100 26 2.18(-12) 3.25398(-11) 2200 14 2.07(-12) 1.55206(-11)

150 26 2.16(-12) 3.13387(-11) 2300 13 2.12(-12) 1.48944(-11)

200 26 2.13(-12) 3.03713(-11) 2400 13 2.04(-12) 1.42535(-11)

250 25 2.18(-12) 2.95752(-11) 2500 12 2.10(-12) 1.36270(-11)

300 25 2.15(-12) 2.88982(-11) 2600 12 2.00(-12) 1.29976(-11)

350 25 2.13(-12) 2.83142(-11) 2700 11 2.06(-12) 1.23732(-11)

400 25 2.10(-12) 2.78000(-11) 3000 10 1.92(-12) 1.05303(-11)

450 24 2.16(-12) 2.73267(-11) 3200 9 1.86(-12) 9.32308(-12)

500 24 2.13(-12) 2.68923(-11) 3500 7 1.89(-12) 7.53761(-12)

550 24 2.10(-12) 2.64897(-11) 3700 6 1.83(-12) 6.39612(-12)

600 23 2.16(-12) 2.61010(-11) 4000 5 1.60(-12) 4.78674(-12)

650 23 2.14(-12) 2.57273(-11) 4500 3 1.23(-12) 2.46504(-12)

700 23 2.11(-12) 2.53666(-11) 4700 2 1.20(-12) 1.77229(-12)

750 22 2.17(-12) 2.50149(-11) 5000 2 6.51(-13) 9.76476(-13)

800 22 2.14(-12) 2.46639(-11) 5100 2 5.34(-13) 8.00754(-13)

850 22 2.11(-12) 2.43220(-11) 5200 2 4.38(-13) 6.56727(-13)
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Table 3.3: ηk for the case |ψ(x)− x| < xε∗0
b η1 η2 η3 η4

18.42 0.0211558 0.389901 7.18587 132.436

18.43 0.0210836 0.388781 7.16912 132.199

18.44 0.0210116 0.387664 7.15241 131.962

18.45 0.0209853 0.388227 7.18220 132.871

18.5 0.0207960 0.388884 7.27214 135.989

18.7 0.0195173 0.370829 7.04574 133.869

19.0 0.0177765 0.346641 6.75951 131.81

19.5 0.0149291 0.298581 5.97162 119.432

20 0.0128218 0.269258 5.65441 118.743

21 0.00895956 0.19711 4.33643 95.4014

22 0.00622421 0.143157 3.29261 75.73

23 0.00430097 0.103223 2.47736 59.4567

24 0.00295785 0.0739463 1.84866 46.2165

25 0.00202598 0.0526755 1.36956 35.6087

26 0.00138379 0.0373624 1.00878 27.2372

27 0.000944678 0.026451 0.740628 20.7376

28 0.000647495 0.0187774 0.544543 15.7918

29 0.000449182 0.0134755 0.404264 12.1279

30 0.0003295 0.0115325 0.403637 14.1273

35 0.0000421884 0.00168754 0.0675015 2.70006

40 5.23306(-6) 0.000235488 0.0105969 0.476863

45 6.17042(-7) 0.0000308521 0.00154261 0.0771303

50 9.79061(-8) 7.34296(-6) 0.000550722 0.0413041

75 3.32667(-9) 3.32667(-7) 0.0000332667 0.00332667

100 4.88096(-9) 7.32145(-7) 0.000109822 0.0164733

150 6.26774(-9) 1.25355(-6) 0.00025071 0.0501419

200 7.59281(-9) 1.8982(-6) 0.000474551 0.118638

250 8.87255(-9) 2.66177(-6) 0.00079853 0.239559

300 1.01144(-8) 3.54003(-6) 0.00123901 0.433654

350 1.13257(-8) 4.53027(-6) 0.00181211 0.724843

400 1.251(-8) 5.62949(-6) 0.00253327 1.13997

450 1.36634(-8) 6.83168(-6) 0.00341584 1.70792

500 1.47907(-8) 8.13491(-6) 0.0044742 2.46081

550 1.58938(-8) 9.5363(-6) 0.00572178 3.43307

600 1.69656(-8) 0.0000110277 0.00716799 4.65919

650 1.80091(-8) 0.0000126064 0.00882445 6.17712

700 1.90249(-8) 0.0000142687 0.0107015 8.02615

750 2.0012(-8) 0.0000160096 0.0128076 10.2461

800 2.09643(-8) 0.0000178197 0.0151467 12.8747

850 2.18898(-8) 0.0000197008 0.0177307 15.9577
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Table 3.4: ηk for the case |ψ(x)− x| < xε∗0
b η1 η2 η3 η4

900 2.27887(-8) 0.0000216493 0.0205668 19.5385

950 2.36469(-8) 0.0000236469 0.0236469 23.6469

1000 2.4477(-8) 0.0000257009 0.0269859 28.3352

1050 2.52801(-8) 0.0000278081 0.0305889 33.6478

1100 2.60488(-8) 0.0000299561 0.0344495 39.617

1150 2.67822(-8) 0.0000321386 0.0385663 46.2796

1200 2.74877(-8) 0.0000343597 0.0429496 53.687

1250 2.81663(-8) 0.0000366162 0.0476011 61.8814

1300 2.87997(-8) 0.0000388796 0.0524875 70.8582

1350 2.94071(-8) 0.0000411699 0.0576378 80.693

1400 2.999(-8) 0.0000434855 0.063054 91.4283

1450 3.05328(-8) 0.0000457993 0.0686989 103.048

1500 3.10416(-8) 0.0000481145 0.0745774 115.595

1550 3.15272(-8) 0.0000504435 0.0807096 129.135

1600 3.1983(-8) 0.000052772 0.0870738 143.672

1650 3.2392(-8) 0.0000550663 0.0936128 159.142

1700 3.27777(-8) 0.000057361 0.100382 175.668

1750 3.31427(-8) 0.0000596569 0.107382 193.288

1800 3.34602(-8) 0.0000619014 0.114518 211.857

1850 3.3747(-8) 0.0000641193 0.121827 231.471

1900 3.40133(-8) 0.0000663259 0.129336 252.204

1950 3.42503(-8) 0.0000685005 0.137001 274.002

2000 3.52773(-8) 0.0000740823 0.155573 326.703

2100 3.55621(-8) 0.0000782366 0.172121 378.665

2200 3.56974(-8) 0.0000821041 0.188839 434.331

2300 3.57465(-8) 0.0000857917 0.2059 494.16

2400 3.56337(-8) 0.0000890842 0.22271 556.776

2500 3.54303(-8) 0.0000921187 0.239509 622.722

2600 3.50936(-8) 0.0000947527 0.255832 690.747

2700 3.71195(-8) 0.000111358 0.334075 1002.23

3000 3.3697(-8) 0.00010783 0.345057 1104.18

3200 3.26308(-8) 0.000114208 0.399727 1399.04

3500 2.8266(-8) 0.000105998 0.397491 1490.59

3750 2.4491(-8) 0.0000979639 0.391855 1567.42

4000 2.01043(-8) 0.0000844381 0.35464 1489.49

4200 1.69978(-8) 0.0000764902 0.344206 1548.93

4500 1.15857(-8) 0.0000544527 0.255928 1202.86

4700 8.86144(-9) 0.0000443072 0.221536 1107.68

5000 4.98003(-9) 0.0000253981 0.12953 660.606

5100 4.16392(-9) 0.0000216524 0.112592 585.48

5200 3.42352(-9) 0.0000178468 0.0930354 484.993
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Table 3.5: ηk for the case |ψ(x)− x| < xε∗0
b m δ ε η1 η2 η3 η4

3800 6 1.67(-12) 5.86122(-12) 2.23312(-8) 0.000085082 0.324163 1235.06

3810 5 1.94(-12) 5.80739(-12) 2.21842(-8) 0.0000847437 0.323721 1236.61

3820 5 1.92(-12) 5.74859(-12) 2.20171(-8) 0.0000843255 0.322967 1236.96

3830 5 1.90(-12) 5.69039(-12) 2.18511(-8) 0.0000839082 0.322207 1237.28

3840 5 1.88(-12) 5.63277(-12) 2.16862(-8) 0.0000834918 0.321443 1237.56

3850 5 1.86(-12) 5.57575(-12) 2.15224(-8) 0.0000830764 0.320675 1237.8

3860 5 1.84(-12) 5.51930(-12) 2.13597(-8) 0.000082662 0.319902 1238.02

3870 5 1.82(-12) 5.46344(-12) 2.11982(-8) 0.0000822488 0.319126 1238.21

3880 5 1.80(-12) 5.40817(-12) 2.10378(-8) 0.0000818369 0.318346 1238.36

3890 5 1.78(-12) 5.35348(-12) 2.08786(-8) 0.0000814265 0.317563 1238.5

3900 5 1.77(-12) 5.29927(-12) 2.07201(-8) 0.0000810158 0.316772 1238.58

3910 5 1.75(-12) 5.24559(-12) 2.05627(-8) 0.0000806058 0.315975 1238.62

3920 5 1.73(-12) 5.19249(-12) 2.04065(-8) 0.0000801975 0.315176 1238.64

3930 5 1.71(-12) 5.13998(-12) 2.02515(-8) 0.000079791 0.314376 1238.64

3940 5 1.70(-12) 5.08798(-12) 2.00975(-8) 0.0000793852 0.313572 1238.61

3950 5 1.68(-12) 5.03642(-12) 1.99442(-8) 0.0000789791 0.312757 1238.52

3960 5 1.66(-12) 4.98545(-12) 1.97922(-8) 0.0000785752 0.311944 1238.42

3970 5 1.64(-12) 4.93509(-12) 1.96417(-8) 0.0000781739 0.311132 1238.31

3980 5 1.63(-12) 4.88504(-12) 1.94913(-8) 0.0000777704 0.310304 1238.11

3990 5 1.61(-12) 4.83561(-12) 1.93424(-8) 0.0000773697 0.309479 1237.92

4000 5 1.60(-12) 4.78674(-12) 1.91948(-8) 0.0000769713 0.308655 1237.71
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